scholarly journals Source identification and risk analysis of potentially toxic elements (PTEs) in rainwater runoff in manganese mine (South Central Hunan, China)

Author(s):  
Xin Luo ◽  
Bozhi Ren ◽  
Andrew S. Hursthouse ◽  
Feng Jiang ◽  
Ren-jian Deng ◽  
...  

Abstract Potentially toxic elements (PTEs) in manganese ore areas are prevalent in rainwater runoff and pose a major threat to human health. In this study, field investigation and geostatistical analysis methods of Positive Matrix Factorization (PMF) and Geographic Information System (GIS) were used to systematically study the pollution in rainwater runoff from a manganese mining area in Xiangtan, China, to evaluate source contributions in the health risk assessment of PTEs. The average concentrations (mg/L) of six PTEs were: 0.3357 (Mn), 0.0450 (Ni), 0.0106 (Cu), 0.0148 (Zn), 0.0068 (Cd) and 0.0390 (Pb). The Coefficients of Variation (CV) for Mn and Zn were >180% and >130%, with the other analytes having values below 70%. The GIS and PMF analysis produced more refined spatial source apportionments, such as mining, smelting, transportation, agricultural production and natural sources. The results of the health risk assessment showed that the non-carcinogenic risk was negligible, and the carcinogenic risk was potentially dangerous but acceptable for both adults and children. In addition, the children's total carcinogenic risk value was greater than that of adults, highlighting their vulnerability. This study demonstrates the potential of PMF to provide a framework to spatially prioritize treatment objectives within the mining region to improve environmental conditions.

Author(s):  
Liang Xiao ◽  
Yong Zhou ◽  
He Huang ◽  
Yu-Jie Liu ◽  
Ke Li ◽  
...  

Arable land soil is one of the most precious natural resources of Earth, it provides the fundamental material and numerous resources essential for the development of human society. To determine the pollution of potential toxic factors in the surface soil of cultivated land and its risks to human health, concentrations of five different potentially toxic elements (PTEs) were detected in 1109 soil samples collected in Xiangzhou, China, in 2019. In this study, health risk assessment was used to judge the degree of pollution in the study area, the result of Geographic Information System (GIS) was as used to research the spatial distribution characteristics of PTEs, and random forest (RF) was used to assess the natural and man-made influencing factors. We investigated the sources of PTEs through quantifying the indicators, which gave further insights. The main results are: (1) In arable land soil, the average content of PTEs is 0.14 mg/kg cadmium (Cd), 0.05 mg/kg mercury (Hg), 12.89 mg/kg arsenic (As), 29.23 mg/kg lead (Pb), and 78.58 mg/kg chromium (Cr), respectively. The content of As and Pb outpaced the background value of Hubei soil. (2) The human health risk assessment in Xiangzhou indicates that the most important exposure pathway is soil ingestion, occupied about 99% to health risks of PTEs; non-carcinogenic risk from exposure to As, Pb and Cr in soil was higher than the limit (overall potential risk index, HI > 1) for both children and adults. Moreover, carcinogenic risk postured by Cd, Cr, and As was higher than the limit (10−4) through soil exposure for both children and adults, indicating that Cd, As, Pb and Cr in soil have significant effect on people’s health through exposure. (3) We found that the increased PTEs in the arable land soil mainly originated from potential water sources, air and soil pollution sources, breeding farms, and mining areas.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 613
Author(s):  
Samantha Jiménez-Oyola ◽  
Kenny Escobar Segovia ◽  
María-Jesús García-Martínez ◽  
Marcelo Ortega ◽  
David Bolonio ◽  
...  

Anthropogenic activities performed in the Ecuadorian Amazon have released potentially toxic elements (PTEs) into the rivers, causing severe environmental pollution and increasing the risk of exposure to the residents of the surrounding areas. This study aims to carry out a human health risk assessment using deterministic and probabilistic methods to estimate the hazard index (HI) and total cancer risk (TCR) related to multi-pathway human exposure to PTEs in polluted rivers. Concentrations of Al, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in surface water and sediment samples from rivers on the Ecuadorian Amazon were considered to assess the potential adverse human health effects. As a result, deterministic and probabilistic estimations of cancer and non-cancer risk through exposure to surface waters and sediments were above the safety limit. A sensitivity analysis identified the concentration of PTEs and the exposure duration (ED) as the two most important variables for probabilistic health risk assessment. The highest risk for receptors was related to exposure to polluted sediments through incidental ingestion and dermal contact routes. According to the deterministic estimation, the human health risk through ingestion of water was above the threshold in specific locations. This study reveals the potential health risk to which the population is exposed. This information can be used as a baseline to develop public strategies to reduce anthropogenic pollution and exposure to PTEs in Ecuadorian Amazon rivers.


Author(s):  
Jiankang Wang ◽  
Bo Gao ◽  
Shuhua Yin ◽  
Dongyu Xu ◽  
Laisheng Liu ◽  
...  

Simultaneous ecological and health risk assessments of potentially toxic elements in soils and sediments can provide substantial information on their environmental influence at the river-basin scale. Herein, soil and sediment samples were collected from the Guishui River basin to evaluate the pollution situation and the ecological and health risk of potentially toxic elements. Various indexes were utilized for quantitatively assessing their health risks. Pollution assessment by geo-accumulation index showed that Cd had “uncontaminated to moderately polluted” status in the soils and sediments. Potential ecological risk index showed that the Guishui River basin was at low risk in general, but Cd was classified as “moderate or considerable ecological risk” both in the soils and sediments. Health risk assessment calculated human exposure from soils and indicated that both non-carcinogenic and carcinogenic risks of the selected potentially toxic elements were lower than the acceptable levels. Health risks posed by potentially toxic elements bio-accumulated in fish, stemming from sediment resuspension, were also assessed. Non-carcinogenic hazard index indicated no adverse health effects on humans via exposure to sediments; however, in general, Cr contributed largely to health risks among the selected potentially toxic elements. Therefore, special attention needs to be paid to the Guishui River basin in the future.


Sign in / Sign up

Export Citation Format

Share Document