scholarly journals New sources of resistance to Fusarium wilt and sterility mosaic disease in a mini-core collection of pigeonpea germplasm

2012 ◽  
Vol 133 (3) ◽  
pp. 707-714 ◽  
Author(s):  
Mamta Sharma ◽  
Abhishek Rathore ◽  
U. Naga Mangala ◽  
Raju Ghosh ◽  
Shivali Sharma ◽  
...  
2020 ◽  
Vol 47 (1) ◽  
pp. 17-24
Author(s):  
R.S. Bennett ◽  
K.D. Chamberlin

ABSTRACT Athelia rolfsii (=Sclerotium rolfsii) is a soilborne fungus that causes the disease commonly known as southern blight, southern stem rot, stem rot, and white mold. Despite the fact that A. rolfsii is one of the most destructive pathogens of peanut, the U.S. germplasm collection has not been evaluated for resistance to this pathogen. Therefore, 71 of the 112 accessions comprising the U.S. peanut mini-core collection were evaluated in the field for resistance to southern blight in 2016 to 2018 in Oklahoma. Moderate to low levels of southern blight were observed, but four accessions—CC125, CC208, CC559, and CC650—had low levels of disease in 2017 and 2018, the most favourable years for A. rolfsii. Ratings for web blotch, a yield-limiting foliar disease in some production areas caused by Didymella arachidicola, were also taken in 2017 and 2018, when outbreaks occurred. Five entries—CC287, CC155, CC149, CC812, and CC559—had between 10% and 20% disease in 2018, a year when over half of the mini-core accessions exhibited between 50% and 93% disease. Because cultivated peanut in the U.S. has a narrow genetic base, these results will be useful to breeders seeking additional sources of resistance to A. rolfsii and web blotch.


2021 ◽  
Vol 143 ◽  
pp. 105569
Author(s):  
Abhay K. Pandey ◽  
Myint Yee ◽  
Mar Mar Win ◽  
Hnin Moh Moh Lwin ◽  
Gopikrishna Adapala ◽  
...  

Plant Disease ◽  
2006 ◽  
Vol 90 (9) ◽  
pp. 1214-1218 ◽  
Author(s):  
S. Pande ◽  
G. Krishna Kishore ◽  
H. D. Upadhyaya ◽  
J. Narayana Rao

Host plant resistance is the major component in the management of fungal diseases in chickpea (Cicer arietinum). We screened a chickpea mini-core collection composed of 211 germ plasm accessions representing the diversity of the global chickpea germ plasm collection of 16,991, maintained at the International Crops Research Institute for the Semi-Arid Tropics to identify sources of multiple disease resistance. The accessions were screened for resistance against As-cochyta blight (Ascochyta rabiei), Botrytis gray mold (Botrytis cinerea), Fusarium wilt (Fusarium oxysporum f. sp. ciceris), and dry root rot (Rhizoctonia bataticola) under a controlled environment. High levels of resistance were observed to Fusarium wilt (FW), where 21 accessions were asymptomatic and 25 resistant. In all, 3, 55, and 6 accessions were moderately resistant to Ascochyta blight (AB), Botrytis gray mold (BGM), and dry root rot (DRR) respectively. ICC 11284 was the only accession moderately resistant to both AB and BGM. Combined resistance also was identified for DRR and FW in 4 accessions, and for BGM and FW in 11 accessions. Through this study, chickpea germ plasm accessions were identified that possess high levels of resistance to more than one fungal disease and would be useful in chickpea multiple disease resistance breeding programs.


2021 ◽  
Vol 36 (1) ◽  
pp. 74-79
Author(s):  
Narendra Singh ◽  
Rakesh R. Patel ◽  
Ashwin. M. Patel

1999 ◽  
Vol 124 (1) ◽  
pp. 28-31 ◽  
Author(s):  
Kevin E. McPhee ◽  
Abebe Tullu ◽  
John M. Kraft ◽  
Fred J. Muehlbauer

Plant breeders must be aware of sources of resistance to pathogens that affect their crops. Fusarium wilt caused by Fusarium oxysporum Schl. f. sp. pisi Snyd. & Hans. is a fungal disease that affects peas and is important worldwide. Resistance to the different races of the pathogen has been identified in adapted germplasm and from specific accessions in the United States World Collection of peas (Pisum sativum L.). The goal of this study was to evaluate the resistance to fusarium wilt race 2 in the Pisum core collection. Of the 452 accessions screened, 62 (14%) were resistant. The resistant accessions included accessions from P.s. ssp. elatius that were collected from 24 different countries. The wide distribution of resistance around the world precludes the identification of any single country or region as a source of resistance. Of the 62 accessions resistant to race 2, 39 are also resistant to race 1 based on data obtained from GRIN. One of the wild progenitors, PI 344012, possessed resistance to races 1 and 2.


Plant Science ◽  
2021 ◽  
Vol 308 ◽  
pp. 110910
Author(s):  
Jian-Min Song ◽  
Muhammad Arif ◽  
Yan Zi ◽  
Sing-Hoi Sze ◽  
Meiping Zhang ◽  
...  

Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 984-989 ◽  
Author(s):  
Sandra E. Branham ◽  
Amnon Levi ◽  
W. Patrick Wechter

Fusarium wilt race 1, caused by the soilborne fungus Fusarium oxysporum Schlechtend.: Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon), is a major disease of watermelon (Citrullus lanatus) in the United States and throughout the world. Although Fusarium wilt race 1 resistance has been incorporated into several watermelon cultivars, identification of additional genetic sources of resistance is crucial if a durable and sustainable level of resistance is to be continued over the years. We conducted a genetic mapping study to identify quantitative trait loci (QTLs) associated with resistance to Fon race 1 in segregating populations (F2:3 and recombinant inbred lines) of Citrullus amarus (citron melon) derived from the Fon race 1 resistant and susceptible parents USVL246-FR2 and USVL114, respectively. A major QTL (qFon1-9) associated with resistance to Fon race 1 was identified on chromosome 9 of USVL246-FR2. This discovery provides a novel genetic source of resistance to Fusarium wilt race 1 in watermelon and, thus, an additional host-resistance option for watermelon breeders to further the effort to mitigate this serious phytopathogen.


PLoS ONE ◽  
2017 ◽  
Vol 12 (2) ◽  
pp. e0172106 ◽  
Author(s):  
Jicun Li ◽  
Xiaobo Wang ◽  
Wenwen Song ◽  
Xinyang Huang ◽  
Jing Zhou ◽  
...  

2012 ◽  
Vol 10 (3) ◽  
pp. 258-260 ◽  
Author(s):  
Mohar Singh ◽  
Z. Khan ◽  
Krishna Kumar ◽  
M. Dutta ◽  
Anju Pathania ◽  
...  

Fusarium wilt caused by Fusarium oxysporum, Schlecht. emend. Snyd. & Hans. f. sp. ciceri is prevalent in most chickpea-growing countries and is a major devastating disease. Host plant resistance is the most practical method of disease management. Indigenous chickpea germplasm reveals a heterogeneous genetic make-up and the response of resistance to wilt is an unexplored potential source for disease resistance. There are 70 indigenous germplasm lines selected on the basis of their agronomic performance and diverse areas of collections in the country. Of these, four accessions had a highly resistant score of 1 and six had a score of 3 using a 1–9 rating scale, indicating their level of resistance to Fusarium wilt (race 4). Other germplasm accessions of chickpea were found to be moderately resistant to highly susceptible disease reaction. Likewise, the same set of germplasm was also screened for Meloidogyne incognita (race 1) using pot culture under controlled condition. Only one accession was found to be resistant to this pest. These resistant gene sources can be utilised effectively for race-specific chickpea wilt and root-knot resistance breeding programmes.


Crop Science ◽  
2016 ◽  
Vol 56 (3) ◽  
pp. 1001-1008 ◽  
Author(s):  
Yan Liu ◽  
Yulin Jia ◽  
David Gealy ◽  
David M. Goad ◽  
Ana L. Caicedo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document