scholarly journals Identification of Sources of Multiple Disease Resistance in Mini-core Collection of Chickpea

Plant Disease ◽  
2006 ◽  
Vol 90 (9) ◽  
pp. 1214-1218 ◽  
Author(s):  
S. Pande ◽  
G. Krishna Kishore ◽  
H. D. Upadhyaya ◽  
J. Narayana Rao

Host plant resistance is the major component in the management of fungal diseases in chickpea (Cicer arietinum). We screened a chickpea mini-core collection composed of 211 germ plasm accessions representing the diversity of the global chickpea germ plasm collection of 16,991, maintained at the International Crops Research Institute for the Semi-Arid Tropics to identify sources of multiple disease resistance. The accessions were screened for resistance against As-cochyta blight (Ascochyta rabiei), Botrytis gray mold (Botrytis cinerea), Fusarium wilt (Fusarium oxysporum f. sp. ciceris), and dry root rot (Rhizoctonia bataticola) under a controlled environment. High levels of resistance were observed to Fusarium wilt (FW), where 21 accessions were asymptomatic and 25 resistant. In all, 3, 55, and 6 accessions were moderately resistant to Ascochyta blight (AB), Botrytis gray mold (BGM), and dry root rot (DRR) respectively. ICC 11284 was the only accession moderately resistant to both AB and BGM. Combined resistance also was identified for DRR and FW in 4 accessions, and for BGM and FW in 11 accessions. Through this study, chickpea germ plasm accessions were identified that possess high levels of resistance to more than one fungal disease and would be useful in chickpea multiple disease resistance breeding programs.

Plant Disease ◽  
2003 ◽  
Vol 87 (5) ◽  
pp. 557-562 ◽  
Author(s):  
Nichole R. O'Neill ◽  
Gary R. Bauchan ◽  
Deborah A. Samac

The annual Medicago spp. core collection, consisting of 201 accessions, represents the genetic diversity inherent in 3,159 accessions from 36 annual Medicago spp. This germ plasm was evaluated for resistance to spring black stem and leaf spot caused by Phoma medicaginis. Spring black stem and leaf spot is a major destructive disease in perennial alfalfa (Medicago sativa) grown in North America, Europe, and other temperate regions. Disease control is based principally on the use of cultivars with moderate levels of resistance. Evaluation of the core collection was conducted using standardized environmental conditions in growth chambers, and included the M. sativa standard reference cultivars Ramsey (resistant) and Ranger (susceptible). The degree of resistance found among accessions within species was variable, but most annual species and accessions were susceptible. Most accessions from 10 species exhibited high disease resistance. These included accessions of M. constricta, M. doliata, M. heyniana, M. laciniata, M. lesinsii, M. murex, M. orbicularis, M. praecox, M. soleirolii, and M. tenoreana. Most of the accessions within M. arabica, M. minima, M. lanigera, M. rotata, M. rugosa, M. sauvagei, and M. scutellata were highly susceptible. Disease reactions among some accessions within species were highly variable. On a 0-to-5 disease severity scale, ratings ranged from 0.67 (PI 566873) to 4.29 (PI 566883) within accessions of M. polymorpha. Most of the M. truncatula accessions were susceptible, with a mean of 3.74. Resistant reactions were similar to those found in incompatible interactions with P. medicaginis and alfalfa, which have been associated with specific genes leading to the production of isoflavonoid phytoalexins. The large genetic variability in annual Medicago spp. offers potential for locating and utilizing disease resistance genes through breeding or genetic engineering that will enhance the utilization of Medicago spp. as a forage crop.


2012 ◽  
Vol 133 (3) ◽  
pp. 707-714 ◽  
Author(s):  
Mamta Sharma ◽  
Abhishek Rathore ◽  
U. Naga Mangala ◽  
Raju Ghosh ◽  
Shivali Sharma ◽  
...  

2021 ◽  
Vol 143 ◽  
pp. 105569
Author(s):  
Abhay K. Pandey ◽  
Myint Yee ◽  
Mar Mar Win ◽  
Hnin Moh Moh Lwin ◽  
Gopikrishna Adapala ◽  
...  

Plant Disease ◽  
2012 ◽  
Vol 96 (11) ◽  
pp. 1629-1633 ◽  
Author(s):  
Rajan Sharma ◽  
H. D. Upadhyaya ◽  
S. V. Manjunatha ◽  
V. P. Rao ◽  
R. P. Thakur

Anthracnose, leaf blight, and rust are important biotic constraints to grain and forage sorghum production worldwide and are best managed through host plant resistance. A sorghum mini-core collection, consisting of 242 germplasm accessions developed from a core collection of 2,246 landrace accessions originating from 58 countries, was evaluated to identify sources of resistance to foliar diseases. The mini-core accessions were evaluated in anthracnose- and leaf-blight-screening nurseries under artificial inoculation in the rainy and late rainy seasons, respectively, during 2009 and 2010. For rust resistance, screening was done under artificial inoculation in the greenhouse as well as in the field under natural infection. In all, 13 accessions were found resistant (score ≤3.0 on a 1-to-9 scale) to anthracnose and 27 to leaf blight in both 2009 and 2010. Six accessions exhibited resistance to rust in both the greenhouse and the field. In the resistant accessions, a wide range of diversity was observed for agronomic traits such as days to 50% flowering, plant height, and grain yield/plant, and morphological characteristics such as grain or glume color, glume coverage, endosperm texture, and panicle type (ear head compactness). Three mini-core accessions (IS 473, IS 23684, and IS 23521) exhibited resistance to all three diseases. These accessions with multiple disease resistance will be useful in sorghum disease resistance breeding programs.


Plant Science ◽  
2021 ◽  
Vol 308 ◽  
pp. 110910
Author(s):  
Jian-Min Song ◽  
Muhammad Arif ◽  
Yan Zi ◽  
Sing-Hoi Sze ◽  
Meiping Zhang ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (2) ◽  
pp. e0172106 ◽  
Author(s):  
Jicun Li ◽  
Xiaobo Wang ◽  
Wenwen Song ◽  
Xinyang Huang ◽  
Jing Zhou ◽  
...  

2008 ◽  
Vol 117 (4) ◽  
pp. 531-543 ◽  
Author(s):  
Young-Ki Jo ◽  
Reed Barker ◽  
William Pfender ◽  
Scott Warnke ◽  
Sung-Chur Sim ◽  
...  

2012 ◽  
Vol 10 (3) ◽  
pp. 258-260 ◽  
Author(s):  
Mohar Singh ◽  
Z. Khan ◽  
Krishna Kumar ◽  
M. Dutta ◽  
Anju Pathania ◽  
...  

Fusarium wilt caused by Fusarium oxysporum, Schlecht. emend. Snyd. & Hans. f. sp. ciceri is prevalent in most chickpea-growing countries and is a major devastating disease. Host plant resistance is the most practical method of disease management. Indigenous chickpea germplasm reveals a heterogeneous genetic make-up and the response of resistance to wilt is an unexplored potential source for disease resistance. There are 70 indigenous germplasm lines selected on the basis of their agronomic performance and diverse areas of collections in the country. Of these, four accessions had a highly resistant score of 1 and six had a score of 3 using a 1–9 rating scale, indicating their level of resistance to Fusarium wilt (race 4). Other germplasm accessions of chickpea were found to be moderately resistant to highly susceptible disease reaction. Likewise, the same set of germplasm was also screened for Meloidogyne incognita (race 1) using pot culture under controlled condition. Only one accession was found to be resistant to this pest. These resistant gene sources can be utilised effectively for race-specific chickpea wilt and root-knot resistance breeding programmes.


Sign in / Sign up

Export Citation Format

Share Document