Effect of terminal water stress on leaf epicuticular wax load, residual transpiration and grain yield in barley

Euphytica ◽  
2009 ◽  
Vol 172 (3) ◽  
pp. 341-349 ◽  
Author(s):  
A. González ◽  
L. Ayerbe
2021 ◽  
Vol 22 (19) ◽  
pp. 10242
Author(s):  
Paco Romero ◽  
María Teresa Lafuente

The phytohormone abscisic acid (ABA) is a major regulator of fruit response to water stress, and may influence cuticle properties and wax layer composition during fruit ripening. This study investigates the effects of ABA on epicuticular wax metabolism regulation in a citrus fruit cultivar with low ABA levels, called Pinalate (Citrus sinensis L. Osbeck), and how this relationship is influenced by water stress after detachment. Harvested ABA-treated fruit were exposed to water stress by storing them at low (30–35%) relative humidity. The total epicuticular wax load rose after fruit detachment, which ABA application decreased earlier and more markedly during fruit-dehydrating storage. ABA treatment changed the abundance of the separated wax fractions and the contents of most individual components, which reveals dependence on the exposure to postharvest water stress and different trends depending on storage duration. A correlation analysis supported these responses, which mostly fitted the expression patterns of the key genes involved in wax biosynthesis and transport. A cluster analysis indicated that storage duration is an important factor for the exogenous ABA influence and the postharvest environment on epicuticular wax composition, cuticle properties and fruit physiology. Dynamic ABA-mediated reconfiguration of wax metabolism is influenced by fruit exposure to water stress conditions.


2020 ◽  
Vol 54 (5) ◽  
pp. 472-486
Author(s):  
Muhammad Umair Majid ◽  
Zunaira Sher ◽  
Bushra Rashid ◽  
Qurban Ali ◽  
Muhammad Bilal Sarwar ◽  
...  

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 694g-695 ◽  
Author(s):  
Imed Dami ◽  
Harrison Hughes

Micropropagated grapes (Vitis sp. `Valiant') were subjected to water stress while rooting with the addition of 2% (w/v) PEG 8000. PEG-treated plantlets exhibited reduced growth, as compared to control (in vitro, no PEG), but developed greater leaf epicuticular wax. PEG-treated plantlets had three times the wax level of control. Although treated plantlets showed changes in leaf anatomy, no effect on stomatal frequency or stomatal index was evident. Differences in epidermal cell configuration were also observed among leaves from different treatments. PEG-treated plantlets resembled those grown in the greenhouse, morphologically and anatomically, and exhibited a higher survival rate than control upon transfer to the greenhouse.


1991 ◽  
Vol 18 (1) ◽  
pp. 53 ◽  
Author(s):  
PC Pheloung ◽  
KHM Siddique

Field experiments were conducted in the eastern wheat belt of Western Australia in a dry year with and without irrigation (1987) and in a wet year (1988), comparing three cultivars of wheat differing in height and yield potential. The aim of the study was to determine the contribution of remobilisable stem dry matter to grain dry matter under different water regimes in old and modern wheats. Stem non-structural carbohydrate was labelled with 14C 1 day after anthesis and the activity and weight of this pool and the grain was measured at 2, 18 and 58 days after anthesis. Gutha and Kulin, modern tall and semi-dwarf cultivars respectively, yielded higher than Gamenya, a tall older cultivar in all conditions, but the percentage reduction in yield under water stress was greater for the modern cultivars (41, 34 and 23%). In the grain of Gamenya, the increase in 14C activity after the initial labelling was highest under water stress. Generally, loss of 14C activity from the non-structural stem dry matter was less than the increase in grain activity under water stress but similar to or greater than grain activity increase under well watered conditions. Averaged over environments and cultivars, non-structural dry matter stored in the stem contributed at least 20% of the grain dry matter.


2017 ◽  
Vol 162 (3) ◽  
pp. 316-332 ◽  
Author(s):  
Ian R. Willick ◽  
Rachid Lahlali ◽  
Perumal Vijayan ◽  
David Muir ◽  
Chithra Karunakaran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document