Identification of QTLs related to cadmium tolerance from wild rice (Oryza nivara) using a high-density genetic map for a set of introgression lines

Euphytica ◽  
2019 ◽  
Vol 215 (12) ◽  
Author(s):  
Xin Ma ◽  
Xiaoping Chen ◽  
Jie Zhao ◽  
Shanshan Wang ◽  
Lubin Tan ◽  
...  
2015 ◽  
Vol 41 (10) ◽  
pp. 1510 ◽  
Author(s):  
Wei-Wei QIN ◽  
Yong-Xiang LI ◽  
Chun-Hui LI ◽  
Lin CHEN ◽  
Xun WU ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (11) ◽  
pp. 5723
Author(s):  
Yuan-Yuan Xu ◽  
Sheng-Rui Liu ◽  
Zhi-Meng Gan ◽  
Ren-Fang Zeng ◽  
Jin-Zhi Zhang ◽  
...  

A high-density genetic linkage map is essential for genetic and genomic studies including QTL mapping, genome assembly, and comparative genomic analysis. Here, we constructed a citrus high-density linkage map using SSR and SNP markers, which are evenly distributed across the citrus genome. The integrated linkage map contains 4163 markers with an average distance of 1.12 cM. The female and male linkage maps contain 1478 and 2976 markers with genetic lengths of 1093.90 cM and 1227.03 cM, respectively. Meanwhile, a genetic map comparison demonstrates that the linear order of common markers is highly conserved between the clementine mandarin and Poncirus trifoliata. Based on this high-density integrated citrus genetic map and two years of deciduous phenotypic data, two loci conferring leaf abscission phenotypic variation were detected on scaffold 1 (including 36 genes) and scaffold 8 (including 107 genes) using association analysis. Moreover, the expression patterns of 30 candidate genes were investigated under cold stress conditions because cold temperature is closely linked with the deciduous trait. The developed high-density genetic map will facilitate QTL mapping and genomic studies, and the localization of the leaf abscission deciduous trait will be valuable for understanding the mechanism of this deciduous trait and citrus breeding.


Euphytica ◽  
2021 ◽  
Vol 217 (8) ◽  
Author(s):  
Peng Jin ◽  
Lihua Wang ◽  
Wenjie Zhao ◽  
Jian Zheng ◽  
Yi-Hong Wang ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
Elise A. R. Serin ◽  
L. B. Snoek ◽  
Harm Nijveen ◽  
Leo A. J. Willems ◽  
Jose M. Jiménez-Gómez ◽  
...  

2021 ◽  
Vol 43 (4) ◽  
pp. 399-406
Author(s):  
Licheng Liu ◽  
Xiaoxiang Li ◽  
Sanxiong Liu ◽  
Jun Min ◽  
Wenqiang Liu ◽  
...  

2018 ◽  
Vol 19 (10) ◽  
pp. 3140 ◽  
Author(s):  
Chenggang Xiang ◽  
Ying Duan ◽  
Hongbo Li ◽  
Wei Ma ◽  
Sanwen Huang ◽  
...  

As one of the earliest domesticated species, Cucurbita pepo (including squash and pumpkin) is rich in phenotypic polymorphism and has huge economic value. In this research, using 1660 expressed sequence tags-simple sequence repeats (EST-SSRs) and 632 genomic simple sequence repeats (gSSRs), we constructed the highest-density EST-SSR-based genetic map in Cucurbita genus, which spanned 2199.1 cM in total and harbored 623 loci distributed in 20 linkage groups. Using this map as a bridge, the two previous gSSR maps were integrated by common gSSRs and the corresponding relationships around chromosomes in three sets of genomes were also collated. Meanwhile, one large segmental inversion that existed between our map and the C. pepo genome was detected. Furthermore, three Quantitative Trait Loci (QTLs) of the dwarf trait (gibberellin-sensitive dwarf type) in C. pepo were located, and the candidate region that covered the major QTL spanned 1.39 Mb, which harbored a predicted gibberellin 2-β-oxidase gene. Considering the rich phenotypic polymorphism, the important economic value in the Cucurbita genus species and several advantages of the SSR marker were identified; thus, this high-density EST-SSR-based genetic map will be useful in Pumpkin and Squash breeding work in the future.


PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112089 ◽  
Author(s):  
Didi Zhang ◽  
Yingpeng Hua ◽  
Xiaohua Wang ◽  
Hua Zhao ◽  
Lei Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document