scholarly journals Modelling the nucleation and propagation of cracks at twin boundaries

Author(s):  
Nicolò Grilli ◽  
Alan C. F. Cocks ◽  
Edmund Tarleton

AbstractFracture arising from cracks nucleating and propagating along twin boundaries is commonly observed in metals that exhibit twinning as a plastic deformation mechanism. This phenomenon affects the failure of macroscopic mechanical components, but it is not fully understood. We present simulations in which a continuum model for discrete twins and a cohesive zone model are coupled to aid the understanding of fracture at twin boundaries. The interaction between different twin systems is modelled using a local term that depends on the continuum twin variables. Simulations reveal that the resolved shear stress necessary for an incident twin to propagate through a barrier twin can be up to eight times the resolved shear stress for twin nucleation. Interface elements are used at the interfaces between all bulk elements to simulate arbitrary intragranular cracks. An algorithm to detect twin interfaces is developed and their strength has been calibrated to give good agreement with the experimentally observed fracture path. The elasto-plastic deformation induced by discrete twins is modelled using the crystal plasticity finite element method and the stress induced by twin tips is captured. The tensile stress caused by the tip of an incident twin on a barrier twin is sufficient to nucleate a crack. A typical staircase fracture path, with cracks propagating along the twin interfaces, is reproduced only if the strength of the twin interfaces is decreased to about one-third of the strength of the bulk material. This model can be used to help understand fracture caused by the activation of multiple twin systems in different materials.

2004 ◽  
Author(s):  
W. Li ◽  
S. Qu ◽  
T. Siegmund ◽  
Y. Huang

Simulations of indentation delamination of ductile films on elastic substrates are performed. A cohesive zone model accounts for initiation and growth of interface delaminations and a strain gradient plasticity framework for the length scale dependence of plastic deformation. With the cohesive zone model and the strain gradient formulation two length scales are introduced in to the analysis.


Author(s):  
Chris Bassindale ◽  
Xin Wang ◽  
William R. Tyson ◽  
Su Xu

Abstract In this work, the cohesive zone model (CZM) was used to examine the transferability of the crack tip opening angle (CTOA) from small-scale to full-scale geometries. The pipe steel STPG370 was modeled. A drop-weight tear test (DWTT) model and pipe model were studied using the finite element code ABAQUS 2017x. The cohesive zone model was used to simulate crack propagation in 3D. The CZM parameters were calibrated based on matching the surface CTOA measured from a DWTT finite element model to the surface CTOA measured from the experimental DWTT specimen. The mid-thickness CTOA of the DWTT model was in good agreement with the experimental value determined from E3039 and the University of Tokyo group’s load-displacement data. The CZM parameters were then applied to the pipe model. The internal pressure distribution and decay during the pipe fracture process was modeled using the experimental data and implemented through a user-subroutine (VDLOAD). The mid-thickness CTOA from the DWTT model was similar to the mid-thickness CTOA from the pipe model. The average surface CTOA of the pipe model was in good agreement with the average experimental value. The results give confidence in the transferability of the CTOA between small-scale specimens and full-scale pipe.


2019 ◽  
Vol 964 ◽  
pp. 257-262
Author(s):  
Victor D. Waas ◽  
Mas Irfan P. Hidayat ◽  
Lukman Noerochim

Delamination or interlaminar fracture often occurs in composite laminate due to several factors such as high interlaminar stress, stress concentration, impact stress as well as imperfections in manufacturing processes. In this study, finite element (FE) simulation of mode I delamination in double cantilever beam (DCB) specimen of carbon fiber/epoxy laminate HTA/6376C is investigated using cohesive zone model (CZM). 3D geometry of DCB specimen is developed in ANSYS Mechanical software and 8-node interface elements with bi-linear formulation are employed to connect the upper and lower parts of DCB. Effect of variation of number of elements on the laminate critical force is particularly examined. The mesh variation includes coarse, fine, and finest mesh. Simulation results show that the finest mesh needs to be employed to produce an accurate assessment of laminate critical force, which is compared with the one obtained from exact solution. This study hence addresses suitable number of elements as a reference to be used for 3D simulation of delamination progress in the composite laminate, which is less explored in existing studies of delamination of composites so far.


2014 ◽  
Vol 2014.27 (0) ◽  
pp. 495-496
Author(s):  
Yuichi Shintaku ◽  
Mayu Muramatsu ◽  
Seiichiro Tsutsumi ◽  
Kenjiro Terada ◽  
Takashi Kyoya ◽  
...  

2013 ◽  
Vol 592-593 ◽  
pp. 193-196
Author(s):  
Vladislav Kozák ◽  
Zdeněk Chlup

Specific silicon nitride based materials are considered according to certain practical requirements of process, the influence of the grain size and orientation on the bridging mechanisms was found. Crack-bridging mechanisms can provide substantial increases in toughness coupled with the strength in ceramics. The prediction of the crack propagation through interface elements based on the fracture mechanics approach and cohesive zone model is investigated and from the amount of damage models the cohesive models seem to be especially attractive for the practical applications. Using cohesive models the behaviour of materials is realized by two types of elements. The former is the element for classical continuum and the latter is the connecting cohesive element. Within the standard finite element package Abaqus a new finite element has been developed; it is written via the UEL (users element) procedure. Its shape can be very easily modified according to the experimental data for the set of ceramics and composites. The new element seems to be very stable from the numerical point a view. The shape of the traction separation law for three experimental materials is estimated from the macroscopic tests, JR curve is predicted and stability of the bridging law is tested.


2018 ◽  
Vol 03 (01n02) ◽  
pp. 1850003
Author(s):  
Chao Wang ◽  
Dandan Lyu

In this work, a multiscale cohesive zone model (MCZM) is developed to simulate the high-speed penetration induced dynamic fracture process such as fragmentation in crystalline solids. This model describes bulk material as a local quasi-continuum medium which follows the Cauchy–Born rule while cohesive zone element is governed by an interface depletion potential, such that the cohesive zone constitutive descriptions are genetically consistent with that of bulk element. This multiscale method proved to be effective in describing material inhomogeneities and it is constructed and implemented in a cohesive finite element Galerkin weak formulation. Numerical simulations of high-speed penetration with different shape of penetrators, i.e., square, circle and parabola nose penetrators are performed. Results show that the proposed MCZM can successfully capture spall fracture, the penetration process and different characteristics of fragmentation under different shape of penetrators.


2016 ◽  
Vol 27 (1) ◽  
pp. 138-175 ◽  
Author(s):  
Nicolás A Labanda ◽  
Sebastián M Giusti ◽  
Bibiana M Luccioni

A cohesive zone model implemented in an augmented Lagrangian functional is used for simulation of meso-scale fracture problems in this paper. The method originally developed by Lorentz is first presented in a rigorous variational framework. The equivalence between the stationary point of the one-field problem and the saddle point of the mixed formulation is proved by solving the double inequality of the mixed functional. An adaptation to simulate fracture phenomena in the meso-scale via mesh modification is also presented as an algorithm to insert zero-thickness interface elements based on Lagrange multipliers, boarding the non-trivial task of the field interpolation for different crack paths (plain and tortuous). A suitable tool to study the matrix fracture and debonding phenomena in composites with strongly different component stiffnesses that avoids ill-conditioning matrices associated with intrinsic cohesive zone models is obtained. The method stability is discussed using a simple patch test. Some numerical applications to fracture problems taking into account the mesostructure and, particularly, the study of transverse failure of longitudinal fiber reinforced epoxy and the fracture in concrete specimens are included in the paper. Comparing the numerical results with the experimental results obtained by other researchers, the paper introduces a discussion about the influence of coarse aggregate volume in meso-scale fracture mechanisms in concrete L-shaped specimens.


Author(s):  
Rakesh K. Kapania ◽  
Dhaval P. Makhecha ◽  
Eric R. Johnson ◽  
Josh Simon ◽  
David A. Dillard

An experimental and computational study of an adhesively bonded, double cantilevered beam (DCB) under quasi-static loading is presented. The polymeric adhesives are either an acrylic or an epoxy, and the adherends are 6061 aluminum alloy. DCB tests bonded with the acrylic exhibited stable crack growth, while the DCB tests bonded with the epoxy exhibited unstable crack growth. The responses of the DCB test speciments were modeled in the ABAQUS/Standard® software package. Interface finite elements were located between bulk elements to model crack initiation and crack growth in the adhesive. These interface elements are implemented as user-defined elements in ABAQUS®, and the material law relating the interfacial tractions to the separation displacements is based on a cohesive zone model (CZM). Using interface elements only to model the acrylic adhesive, the simulation correlates very well to the test. Good correlation between the simulation and the test for the epoxy adhesive is achieved if both bulk modeling of the adhesive and inertia of the specimen are included.


Sign in / Sign up

Export Citation Format

Share Document