Assessment of maize yield gap and major determinant factors between smallholder farmers in the Dedza district of Malawi

2015 ◽  
Vol 105 (3) ◽  
pp. 291-308 ◽  
Author(s):  
Lulseged Tamene ◽  
Powell Mponela ◽  
Gift Ndengu ◽  
Job Kihara
Agriculture ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 219
Author(s):  
Sussy ◽  
Ola ◽  
Maria ◽  
Niklas ◽  
Cecilia ◽  
...  

Site-specific land management practice taking into account variability in maize yield gaps (the difference between yields in the 90th percentiles and other yields on smallholder farmers’ fields) could improve resource use efficiency and enhance yields. However, the applicability of the practice is constrained by inability to identify patterns of resource utilization to target application of resources to more responsive fields. The study focus was to map yield gaps on smallholder fields based on identified spatial arrangements differentiated by distance from the smallholder homestead and understand field-specific utilization of production factors. This was aimed at understanding field variability based on yield gap mapping patterns in order to enhance resource use efficiency on smallholder farms. The study was done in two villages, Mukuyu and Shikomoli, with high and low agroecology regarding soil fertility in Western Kenya. Identification of spatial arrangements at 40 m, 80 m, 150 m and 300 m distance from the homestead on smallholder farms for 70 households was done. The spatial arrangements were then classified into near house, mid farm and far farm basing on distance from the homestead. For each spatial arrangement, Landsat sensors acquired via satellite imagery were processed to generate yield gap maps. The focal statistics analysis method using the neighborhoods function was then applied to generate yield gap maps at the different spatial arrangements identified above. Socio-economic, management and biophysical factors were determined, and maize yields estimated at each spatial arrangement. Heterogeneous patterns of high, average and low yield gaps were found in spatial arrangements at the 40 m and 80 m distances. Nearly homogenous patterns tending towards median yield gap values were found in spatial arrangements that were located at the 150 m and 300 m. These patterns correspondingly depicted field-specific utilization of management and socio-economic factors. Field level management practices and socio-economic factors such as application of inorganic fertilizer, high frequency of weed control, early land preparation, high proportion of hired and family labor use and allocation of large land sizes were utilized in spatial arrangements at 150 and 300 m distances. High proportions of organic fertilizer and family labor use were utilized in spatial arrangements at 40 and 80 m distances. The findings thus show that smallholder farmers preferentially manage the application of socio-economic and management factors in spatial arrangements further from the homestead compared to fields closer to the homestead which could be exacerbating maize yield gaps. Delineating management zones based on yield gap patterns at the different spatial arrangements on smallholder farms could contribute to site-specific land management and enhance yields. Investigating the value smallholder farmers attach to each spatial arrangement is further needed to enhance the spatial understanding of yield gap variation on smallholder farms.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 639 ◽  
Author(s):  
Bright Freduah ◽  
Dilys MacCarthy ◽  
Myriam Adam ◽  
Mouhamed Ly ◽  
Alex Ruane ◽  
...  

Climate change is estimated to exacerbate existing challenges faced by smallholder farmers in Sub-Sahara Africa. However, limited studies quantify the extent of variation in climate change impact under these systems at the local scale. The Decision Support System for Agro-technological Transfer (DSSAT) was used to quantify variation in climate change impacts on maize yield under current agricultural practices in semi-arid regions of Senegal (Nioro du Rip) and Ghana (Navrongo and Tamale). Multi-benchmark climate models (Mid-Century, 2040–2069 for two Representative Concentration Pathways, RCP4.5 and RCP8.5), and multiple soil and management information from agronomic surveys were used as input for DSSAT. The average impact of climate scenarios on grain yield among farms ranged between −9% and −39% across sites. Substantial variation in climate response exists across farms in the same farming zone with relative standard deviations from 8% to 117% at Nioro du Rip, 13% to 64% in Navrongo and 9% to 37% in Tamale across climate models. Variations in fertilizer application, planting dates and soil types explained the variation in the impact among farms. This study provides insight into the complexities of the impact of climate scenarios on maize yield and the need for better representation of heterogeneous farming systems for optimized outcomes in adaptation and resilience planning in smallholder systems.


Food Security ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 83-103 ◽  
Author(s):  
Banchayehu Tessema Assefa ◽  
Jordan Chamberlin ◽  
Pytrik Reidsma ◽  
João Vasco Silva ◽  
Martin K. van Ittersum

AbstractEthiopia has achieved the second highest maize yield in sub-Saharan Africa. Yet, farmers’ maize yields are still much lower than on-farm and on-station trial yields, and only ca. 20% of the estimated water-limited potential yield. This article provides a comprehensive national level analysis of the drivers of maize yields in Ethiopia, by decomposing yield gaps into efficiency, resource and technology components, and accounting for a broad set of detailed input and crop management choices. Stochastic frontier analysis was combined with concepts of production ecology to estimate and explain technically efficient yields, the efficiency yield gap and the resource yield gap. The technology yield gap was estimated based on water-limited potential yields from the Global Yield Gap Atlas. The relative magnitudes of the efficiency, resource and technology yield gaps differed across farming systems; they ranged from 15% (1.6 t/ha) to 21% (1.9 t/ha), 12% (1.3 t/ha) to 25% (2.3 t/ha) and 54% (4.8 t/ha) to 73% (7.8 t/ha), respectively. Factors that reduce the efficiency yield gap include: income from non-farm sources, value of productive assets, education and plot distance from home. The resource yield gap can be explained by sub-optimal input use, from a yield perspective. The technology yield gap comprised the largest share of the total yield gap, partly due to limited use of fertilizer and improved seeds. We conclude that targeted but integrated policy design and implementation is required to narrow the overall maize yield gap and improve food security.


2016 ◽  
Vol 32 (1) ◽  
pp. 87-103 ◽  
Author(s):  
W. Mupangwa ◽  
M. Mutenje ◽  
C. Thierfelder ◽  
I. Nyagumbo

AbstractContinuous conventional tillage coupled with unsystematic cereal/legume rotations has promoted low crop productivity on smallholder farms. A multi-locational study was established in three agro-ecoregions (AEs) of Zimbabwe. The aim of the study was to determine the effect of four tillage systems (conventional plowing, planting basins, rip-line and animal traction direct seeding systems) on maize (Zea mays L.), cowpea [Vigna unguiculata (L.) Walp] and soybean [Glycine max (L.) Merrill] yields, and evaluate the economic performance of the conservation agriculture (CA) systems relative to conventional plowing. Each farmer was a replicate of the trial over the three cropping seasons. In the high (750–1000 mm per annum) and low (450–650 mm) rainfall AEs, conventional practice and CA systems gave similar maize grain yield. Under medium rainfall conditions (500–800 mm) planting basins, rip-line and direct seeding systems gave 547, 548 and 1690 kg ha−1 more maize yield than the conventional practice. In the high and low rainfall AEs, conventional practice and planting basins had the lowest maize production risk. Cowpea yield was 35 and 45% higher in the rip-line and direct seeding than conventional practice. Soybean yield was higher in rip-line (36%) and direct seeding (51%) systems than conventional practice. Direct seeding system gave the highest net benefits in all AEs. A combination of long-term biophysical and socio-economic assessments of the different cropping systems tested in our study is critical in order to fully understand their performance under different AEs of Zimbabwe.


2021 ◽  
Vol 13 (22) ◽  
pp. 4602
Author(s):  
Keltoum Khechba ◽  
Ahmed Laamrani ◽  
Driss Dhiba ◽  
Khalil Misbah ◽  
Abdelghani Chehbouni

Africa has the largest population growth rate in the world and an agricultural system characterized by the predominance of smallholder farmers. Improving food security in Africa will require a good understanding of farming systems yields as well as reducing yield gaps (i.e., the difference between potential yield and actual farmer yield). To this end, crop yield gap practices in African countries need to be understood to fill this gap while decreasing the environmental impacts of agricultural systems. For instance, the variability of yields has been demonstrated to be strongly controlled by soil fertilizer use, irrigation management, soil attribute, and the climate. Consequently, the quantitative assessment and mapping information of soil attributes such as nitrogen (N), phosphorus (P), potassium (K), soil organic carbon (SOC), moisture content (MC), and soil texture (i.e., clay, sand and silt contents) on the ground are essential to potentially reducing the yield gap. However, to assess, measure, and monitor these soil yield-related parameters in the field, there is a need for rapid, accurate, and inexpensive methods. Recent advances in remote sensing technologies and high computational performances offer a unique opportunity to implement cost-effective spatiotemporal methods for estimating crop yield with important levels of scalability. However, researchers and scientists in Africa are not taking advantage of the opportunity of increasingly available geospatial remote sensing technologies and data for yield studies. The objectives of this report are to (i) conduct a review of scientific literature on the current status of African yield gap analysis research and their variation in regard to soil properties management by using remote sensing techniques; (ii) review and describe optimal yield practices in Africa; and (iii) identify gaps and limitations to higher yields in African smallholder farms and propose possible improvements. Our literature reviewed 80 publications and covered a period of 22 years (1998-2020) over many selected African countries with a potential yield improvement. Our results found that (i) the number of agriculture yield-focused remote sensing studies has gradually increased, with the largest proportion of studies published during the last 15 years; (ii) most studies were conducted exclusively using multispectral Landsat and Sentinel sensors; and (iii) over the past decade, hyperspectral imagery has contributed to a better understanding of yield gap analysis compared to multispectral imagery; (iv) soil nutrients (i.e., NPK) are not the main factor influencing the studied crop productivity in Africa, whereas clay, SOC, and soil pH were the most examined soil properties in prior papers.


Author(s):  
Mahendra Prasad Tripathi ◽  
Keshab Babu Koirala ◽  
Damodar Gautam ◽  
Subash Subedi ◽  
Jharana Upadhyay ◽  
...  

Maize hybrids can increase production, bridge the yield gap, and boost up domestic production in Nepal. Three-way cross hybrid introduces an alternative to produce low cost hybrid seed for resource poor farmers. A study was performed to identify promising yellow and white maize hybrids developed by International Centre for Maize and Wheat Improvement (CIMMYT), Mexico in Rampur, Nepal. Nineteen three-way cross white maize hybrids with two checks and seventeen yellow maize hybrids with one check were tested in field experiments on 2017 and 2018. Treatments were replicated twice in α-lattice design with each experimental plot of 9.6-m2 (4-m × 2.4-m). AF17A-426-13/14, AF17A-426-1/2, AF17A-426-28/39, and AF17A-426-15/16 were the three-way cross white hybrids produced grain yield of more than 9000 kg ha-1. Similarly, AF17A-473-20/29 and AF17A-473-18/27 yielded about 9000 kg ha-1 among the three-way cross yellow maize hybrids. These hybrids have commercial potentials to increase maize yield in Nepal if the provided parents are successful in the seed production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eric T. Winans ◽  
Tryston A. Beyrer ◽  
Frederick E. Below

Continued yield increases of maize (Zea mays L.) will require higher planting populations, and enhancement of other agronomic inputs could alleviate density-induced stress. Row spacing, plant population, P-S-Zn fertility, K-B fertility, N fertility, and foliar protection were evaluated for their individual and cumulative impacts on the productivity of maize in a maize-soybean [Glycine max (L.) Merr.] rotation. An incomplete factorial design with these agronomic factors in both 0.76 and 0.51 m row widths was implemented for 13 trials in Illinois, United States, from 2014 to 2018. The agronomic treatments were compared to two controls: enhanced and standard, comprising all the factors applied at the enhanced or standard level, respectively. The 0.51 m enhanced management control yielded 3.3 Mg ha–1 (1.8–4.6 Mg ha–1 across the environments) more grain (25%) than the 0.76 m standard management control, demonstrating the apparent yield gap between traditional farm practices and attainable yield through enhanced agronomic management. Narrow rows and the combination of P-S-Zn and K-B fertility were the factors that provided the most significant yield increases over the standard control. Increasing plant population from 79,000 to 109,000 plants ha–1 reduced the yield gap when all other inputs were applied at the enhanced level. However, increasing plant population alone did not increase yield when no other factors were enhanced. Some agronomic factors, such as narrow rows and availability of plant nutrition, become more critical with increasing plant population when density-induced stress is more significant. Changes in yield were dependent upon changes in kernel number. Kernel weight was the heaviest when all the management factors were applied at the enhanced level while only planting 79,000 plants ha–1. Conversely, kernel weight was the lightest when increasing population to 109,000 plants ha–1 while all other factors were applied at the standard level. The yield contribution of each factor was generally greater when applied in combination with all other enhanced factors than when added individually to the standard input system. Additionally, the full value of high-input agronomic management was only realized when matched with greater plant density.


Sign in / Sign up

Export Citation Format

Share Document