Dynamics of bacterial and archaeal amoA gene abundance after additions of organic inputs combined with mineral nitrogen to an agricultural soil

2016 ◽  
Vol 104 (2) ◽  
pp. 143-158 ◽  
Author(s):  
Esther K. Muema ◽  
Georg Cadisch ◽  
Mary K. Musyoki ◽  
Frank Rasche
2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Jian Yang ◽  
Hongchen Jiang ◽  
Hailiang Dong ◽  
Weiguo Hou ◽  
Gaoyuan Li ◽  
...  

2013 ◽  
Vol 59 (7) ◽  
pp. 456-464 ◽  
Author(s):  
Jie Hou ◽  
Xiuyun Cao ◽  
Chunlei Song ◽  
Yiyong Zhou

The coupled nitrification–denitrification process plays a pivotal role in cycling and removal of nitrogen in aquatic ecosystems. In the present study, the communities of ammonia oxidizers and denitrifiers in the sediments of 2 basins (Guozhenghu Basin and Tuanhu Basin) of a large urban eutrophic lake (Lake Donghu) were determined using the ammonia monooxygenase subunit A (amoA) gene and the nitrite reductase gene. At all sites of this study, the archaeal amoA gene predominated over the bacterial amoA gene, whereas the functional gene for denitrification nirK gene far outnumbered the nirS gene. Spatially, compared with the Tuanhu Basin, the Guozhenghu Basin showed a significantly greater abundance of the archaeal amoA gene but less abundance of the nirK and nirS genes, while there was no significant difference of bacterial amoA gene copy numbers between the 2 basins. Unlike the archaeal amoA gene, the nirK gene showed a significant difference in community structure between the 2 basins. Archaeal amoA diversity was limited to the water–sediment cluster of Crenarchaeota, in sharp contrast with nirK for which 22 distinct operational taxonomic units were found. Accumulation of organic substances were found to be positively related to nirK and nirS gene copy numbers but negatively related to archaeal amoA gene copy numbers, whereas the abundance of the bacterial amoA gene was related to ammonia concentration.


2011 ◽  
Vol 3 (6) ◽  
pp. 717-726 ◽  
Author(s):  
Lydia H. Zeglin ◽  
Anne E. Taylor ◽  
David D. Myrold ◽  
Peter J. Bottomley

2020 ◽  
Vol 12 (16) ◽  
pp. 6336 ◽  
Author(s):  
Xin Wu ◽  
Liheng Ren ◽  
Jiachao Zhang ◽  
Hui Peng

The effects of zeolite and biochar addition on ammonia-oxidizing bacteria (AOB) and archaea (AOA) communities during agricultural waste composting were determined in this study. Four treatments were conducted as follows: Treatment A as the control with no additive, Treatment B with 5% of zeolite, Treatment C with 5% of biochar, and Treatment D with 5% of zeolite and 5% biochar, respectively. The AOB and AOA amoA gene abundance as well as the ammonia monooxygenase (AMO) activity were estimated by quantitative PCR and enzyme-linked immunosorbent assay, respectively. The relationship between gene abundance and AMO enzyme activity was determined by regression analysis. Results indicated that the AOB was more abundant than that of AOA throughout the composting process. Addition of biochar and its integrated application with zeolite promoted the AOB community abundance and AMO enzyme activity. Significant positive relationships were obtained between AMO enzyme activity and AOB community abundance (r2 = 0.792; P < 0.01) and AOA community abundance (r2 = 0.772; P < 0.01), indicating that both bacteria and archaea played significant roles in microbial ammonia oxidation during composting. Using biochar and zeolite might promote the nitrification activity by altering the sample properties during agricultural waste composting.


2012 ◽  
Vol 58 (8) ◽  
pp. 1018-1026 ◽  
Author(s):  
Jin Zeng ◽  
Da-Yong Zhao ◽  
Rui Huang ◽  
Qinglong L. Wu

The abundance and community composition of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in the surface sediments of 2 different zones (Meiliang Bay and Eastern Lake Taihu) of Lake Taihu were investigated using real-time quantitative polymerase chain reaction and clone libraries. The amoA gene copy numbers in the surface sediment of Meiliang Bay ranged from 4.91 × 105 to 8.65 × 106 copies/g dry sediment for the archaeal amoA gene and from 3.74 × 104 to 3.86 × 105 copies/g dry sediment for the bacterial amoA gene, which were significantly higher than those of Eastern Lake Taihu (P < 0.05). Concentrations of ammonia (NH4+), total nitrogen, organic matter, and pH of the sediments exhibited significantly negative correlations with the abundance of ammonia-oxidizing archaea or ammonia-oxidizing bacteria (P < 0.05 or P < 0.01, respectively). The potential nitrification rates show remarkable correlations with the copy numbers of the archaeal amoA gene. Diversity of the archaeal amoA gene in Eastern Lake Taihu was significantly higher than that of Meiliang Bay, whereas the bacterial amoA gene diversity was comparable for the 2 lake zones. The data obtained in this study would be useful to elucidate the role of ammonia-oxidizing archaea and ammonia-oxidizing bacteria in the nitrogen cycle of freshwater ecosystems.


Sign in / Sign up

Export Citation Format

Share Document