Two-body equilibrium configurations involving one extreme black hole: the electrovacuum case

2012 ◽  
Vol 44 (9) ◽  
pp. 2373-2386
Author(s):  
I. Cabrera-Munguia ◽  
V. S. Manko ◽  
E. Ruiz ◽  
M. B. Sadovnikova
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Shahar Hadar ◽  
Alexandru Lupsasca ◽  
Achilleas P. Porfyriadis

Abstract We study the SL(2) transformation properties of spherically symmetric perturbations of the Bertotti-Robinson universe and identify an invariant μ that characterizes the backreaction of these linear solutions. The only backreaction allowed by Birkhoff’s theorem is one that destroys the AdS2× S2 boundary and builds the exterior of an asymptotically flat Reissner-Nordström black hole with $$ Q=M\sqrt{1-\mu /4} $$ Q = M 1 − μ / 4 . We call such backreaction with boundary condition change an anabasis. We show that the addition of linear anabasis perturbations to Bertotti-Robinson may be thought of as a boundary condition that defines a connected AdS2×S2. The connected AdS2 is a nearly-AdS2 with its SL(2) broken appropriately for it to maintain connection to the asymptotically flat region of Reissner-Nordström. We perform a backreaction calculation with matter in the connected AdS2× S2 and show that it correctly captures the dynamics of the asymptotically flat black hole.


2015 ◽  
Vol 2015 (7) ◽  
Author(s):  
Alexandru Lupsasca ◽  
Maria J. Rodriguez

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Chang Liu ◽  
Yan-Gang Miao ◽  
Yu-Mei Wu ◽  
Yu-Hao Zhang

We suggest a quantum black hole model that is based on an analogue to hydrogen atoms. A self-regular Schwarzschild-AdS black hole is investigated, where the mass density of the extreme black hole is given by the probability density of the ground state of hydrogen atoms and the mass densities of nonextreme black holes are given by the probability densities of excited states with no angular momenta. Such an analogue is inclined to adopt quantization of black hole horizons. In this way, the total mass of black holes is quantized. Furthermore, the quantum hoop conjecture and the Correspondence Principle are discussed.


2011 ◽  
Vol 412 (4) ◽  
pp. 2417-2432 ◽  
Author(s):  
Yohsuke Takamori ◽  
Ken-ichi Nakao ◽  
Hideki Ishihara ◽  
Masashi Kimura ◽  
Chul-Moon Yoo

2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Fen Long ◽  
Songbai Chen ◽  
Mingzhi Wang ◽  
Jiliang Jing

AbstractWe have studied the shadow of a disformal Kerr black hole with an extra deformation parameter, which belongs to non-stealth rotating solutions in quadratic degenerate higher-order scalar–tensor (DHOST) theory. Our result show that the size of the shadow increases with the deformation parameter for the black hole with arbitrary spin parameter. However, the effect of the deformation parameter on the shadow shape depends heavily on the spin parameter of black hole and the sign of the deformation parameter. The change of the shadow shape becomes more distinct for the black hole with the more quickly rotation and the more negative deformation parameter. Especially, for the near-extreme black hole with negative deformation parameter, there exist a “pedicel”-like structure appeared in the shadow, which increases with the absolute value of deformation parameter. The eyebrow-like shadow and the self-similar fractal structures also appear in the shadow for the disformal Kerr black hole in DHOST theory. These features in the black hole shadow originating from the scalar field could help us to understand the non-stealth disformal Kerr black hole and quadratic DHOST theory.


2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Milko Estrada ◽  
Rodrigo Aros

Abstract In this work it is shown that the thermodynamics of regular black holes with a cosmological horizon, which are solutions of Lovelock gravity, determines that they must evolve either into a state where the black hole and cosmological horizons have reached thermal equilibrium or into an extreme black hole geometry where the black hole and cosmological horizons have merged. This differs from the behavior of Schwarzschild de Sitter geometry which evolves into a de Sitter space, the ground state of the space of solutions. This occurs due to a phase transition of the heat capacity of the black hole horizon. To perform that analysis it is shown that at each horizon a local first law of thermodynamics can be obtained from the gravitational equations.


2010 ◽  
Vol 19 (07) ◽  
pp. 1107-1117 ◽  
Author(s):  
M. H. DEHGHANI ◽  
N. BOSTANI ◽  
R. POURHASAN

We present the asymptotically AdS solutions of Gauss–Bonnet gravity with hyperbolic horizon in the presence of a non-Abelian Yang–Mills field with the gauge semisimple group So(n(n-1)/2-1, 1). We investigate the properties of these solutions and find that the non-negative mass solutions in six and higher dimensions are real everywhere with spacelike singularities. They present black holes with one horizon and have the same causal structure as the Schwarzschild space–time. The solutions in five dimensions or the solutions in higher dimensions with negative mass are not real everywhere. In these cases, one needs a transformation to make the solutions real. These solutions may present a naked singularity, an extreme black hole, a black hole with two horizons, or a black hole with one horizon.


Sign in / Sign up

Export Citation Format

Share Document