Neuronal membrane dynamics as fine regulator of sphingolipid composition

2018 ◽  
Vol 35 (4) ◽  
pp. 397-402 ◽  
Author(s):  
Massimo Aureli ◽  
Maura Samarani ◽  
Nicoletta Loberto ◽  
Elena Chiricozzi ◽  
Laura Mauri ◽  
...  
2004 ◽  
Vol 92 (1) ◽  
pp. 609-621 ◽  
Author(s):  
Robert D. Roorda ◽  
Tobias M. Hohl ◽  
Ricardo Toledo-Crow ◽  
Gero Miesenböck

Biological membranes decorated with suitable contrast agents give rise to nonlinear optical signals such as two-photon fluorescence and harmonic up-conversion when illuminated with ultra-short, high-intensity pulses of infrared laser light. Microscopic images based on these nonlinear contrasts were acquired at video or higher frame rates by scanning a focused illuminating spot rapidly across neural tissues. The scan engine relied on an acousto-optic deflector (AOD) to produce a fast horizontal raster and on corrective prisms to offset the AOD-induced dispersion of the ultra-short excitation light pulses in space and time. Two membrane-bound derivatives of the green fluorescent protein (GFP) were tested as nonlinear contrast agents. Synapto-pHluorin, a pH-sensitive GFP variant fused to a synaptic vesicle membrane protein, provided a time-resolved fluorescent read-out of neurotransmitter release at genetically specified synaptic terminals in the intact brain. Arrays of dually lipidated GFP molecules at the plasma membrane generated intense two-photon fluorescence but no detectable second-harmonic power. Comparison with second-harmonic generation by membranes stained with a synthetic styryl dye suggested that the genetically encoded chromophore arrangement lacked the orientational anisotropy and/or dipole density required for efficient coherent scattering of the incident optical field.


2017 ◽  
Vol 425 (1) ◽  
pp. 85-99 ◽  
Author(s):  
Ankita Shah ◽  
Andrew T. Schiffmacher ◽  
Lisa A. Taneyhill

2021 ◽  
Author(s):  
Aditya Vasan ◽  
Jeremy Orosco ◽  
Uri Magaram ◽  
Connor Weiss ◽  
Marc Duque ◽  
...  

Ultrasound has been used to manipulate cells in both humans and animal models. While intramembrane cavitation and lipid clustering have been suggested as likely mechanisms, they lack experimental evidence. Here we use high-speed digital holographic microscopy (to 100-kHz order) to visualize the cellular membrane dynamics. We show that neuronal and fibroblast membranes deflect about 150 nm upon ultrasound stimulation. Next, we develop a biomechanical model that predicts changes in membrane voltage after ultrasound exposure. Finally, we validate our model predictions using whole-cell patch clamp electrophysiology on primary neurons. Collectively, we show that ultrasound stimulation directly defects the neuronal membrane leading to a change in membrane voltage and subsequent depolarization. Our model is consistent with existing data and provides a mechanism for both ultrasound-evoked neurostimulation and sonogenetic control.


Author(s):  
K. Jacobson ◽  
A. Ishihara ◽  
B. Holifield ◽  
F. Zhang

Our laboratory is concerned with understanding the dynamic structure of the plasma membrane with particular reference to the movement of membrane constituents during cell locomotion. In addition to the standard tools of molecular cell biology, we employ both fluorescence recovery after photo- bleaching (FRAP) and digitized fluorescence microscopy (DFM) to investigate individual cells. FRAP allows the measurement of translational mobility of membrane and cytoplasmic molecules in small regions of single, living cells. DFM is really a new form of light microscopy in that the distribution of individual classes of ions, molecules, and macromolecules can be followed in single, living cells. By employing fluorescent antibodies to defined antigens or fluorescent analogs of cellular constituents as well as ultrasensitive, electronic image detectors and video image averaging to improve signal to noise, fluorescent images of living cells can be acquired over an extended period without significant fading and loss of cell viability.


Author(s):  
R H. Selinfreund ◽  
A. H. Cornell-Bell

Cellular electrophysiological properties are normally monitored by standard patch clamp techniques . The combination of membrane potential dyes with time-lapse laser confocal microscopy provides a more direct, least destructive rapid method for monitoring changes in neuronal electrical activity. Using membrane potential dyes we found that spontaneous action potential firing can be detected using time-lapse confocal microscopy. Initially, patch clamp recording techniques were used to verify spontaneous electrical activity in GH4\C1 pituitary cells. It was found that serum depleted cells had reduced spontaneous electrical activity. Brief exposure to the serum derived growth factor, IGF-1, reconstituted electrical activity. We have examined the possibility of developing a rapid fluorescent assay to measure neuronal activity using membrane potential dyes. This neuronal regeneration assay has been adapted to run on a confocal microscope. Quantitative fluorescence is then used to measure a compounds ability to regenerate neuronal firing.The membrane potential dye di-8-ANEPPS was selected for these experiments. Di-8- ANEPPS is internalized slowly, has a high signal to noise ratio (40:1), has a linear fluorescent response to change in voltage.


2019 ◽  
Author(s):  
Zichen Wang ◽  
Huaxun Fan ◽  
Xiao Hu ◽  
John Khamo ◽  
Jiajie Diao ◽  
...  

<p>The receptor tyrosine kinase family transmits signals into cell via a single transmembrane helix and a flexible juxtamembrane domain (JMD). Membrane dynamics makes it challenging to study the structural mechanism of receptor activation experimentally. In this study, we employ all-atom molecular dynamics with Highly Mobile Membrane-Mimetic to capture membrane interactions with the JMD of tropomyosin receptor kinase A (TrkA). We find that PIP<sub>2 </sub>lipids engage in lasting binding to multiple basic residues and compete with salt bridge within the peptide. We discover three residues insertion into the membrane, and perturb it through computationally designed point mutations. Single-molecule experiments indicate the contribution from hydrophobic insertion is comparable to electrostatic binding, and in-cell experiments show that enhanced TrkA-JMD insertion promotes receptor ubiquitination. Our joint work points to a scenario where basic and hydrophobic residues on disordered domains interact with lipid headgroups and tails, respectively, to restrain flexibility and potentially modulate protein function.</p>


2018 ◽  
Author(s):  
Eva P. Karasmanis ◽  
Cat-Thi Phan ◽  
Dimitrios Angelis ◽  
Ilona A. Kesisova ◽  
Casper C. Hoogenraad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document