Faculty Opinions recommendation of Regulation of maternal phospholipid composition and IP(3)-dependent embryonic membrane dynamics by a specific fatty acid metabolic event in C. elegans.

Author(s):  
Wendy Hanna-Rose ◽  
Tracy Vrablik
eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Mario Ruiz ◽  
Rakesh Bodhicharla ◽  
Marcus Ståhlman ◽  
Emma Svensk ◽  
Kiran Busayavalasa ◽  
...  

The human AdipoR1 and AdipoR2 proteins, as well as their C. elegans homolog PAQR-2, protect against cell membrane rigidification by exogenous saturated fatty acids by regulating phospholipid composition. Here, we show that mutations in the C. elegans gene acs-13 help to suppress the phenotypes of paqr-2 mutant worms, including their characteristic membrane fluidity defects. acs-13 encodes a homolog of the human acyl-CoA synthetase ACSL1, and localizes to the mitochondrial membrane where it likely activates long chains fatty acids for import and degradation. Using siRNA combined with lipidomics and membrane fluidity assays (FRAP and Laurdan dye staining) we further show that the human ACSL1 potentiates lipotoxicity by the saturated fatty acid palmitate: silencing ACSL1 protects against the membrane rigidifying effects of palmitate and acts as a suppressor of AdipoR2 knockdown, thus echoing the C. elegans findings. We conclude that acs-13 mutations in C. elegans and ACSL1 knockdown in human cells prevent lipotoxicity by promoting increased levels of polyunsaturated fatty acid-containing phospholipids.


Biochemistry ◽  
1994 ◽  
Vol 33 (38) ◽  
pp. 11598-11607 ◽  
Author(s):  
Zhen Shen ◽  
Shih-Kwang Wu ◽  
Wonhwa Cho

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Kathryn C Chatfield ◽  
Genevieve C Sparagna ◽  
Sarah Chau ◽  
Michael J Bennett ◽  
Adam J Chicco ◽  
...  

Organization of the mitochondrial electron transport chain (ETC) into a protein “supercomplex” has been shown to be critical for optimal mitochondrial respiration, and is dependent on the phospholipid composition of the inner mitochondrial membrane. A close physical interaction between the ETC supercomplex and the fatty acid beta-oxidation system (FAO, which provides necessary reducing equivalents for ETC) has also been proposed. We have previously demonstrated that content of the primary mitochondrial phospholipid, cardiolipin, is altered in pediatric dilated cardiomyopathy (DCM), with evidence for its dysregulated biosynthesis. We hypothesized that altered cardiolipin content in pediatric DCM is correlated with altered supercomplex-associated ETC activity and mitochondrial fatty acid β-oxidation. A cross-sectional investigation was performed using myocardium from 16 children with DCM and 15 non-failing (NF) controls from the University of Colorado Heart Tissue Bank. Using blue native (BN) -PAGE with in-gel activity staining we demonstrated lower activity of supercomplex-associated complexes I (DCM 80% of NF, P<0.05) and IV (DCM 72% of NF, P<0.05) in pediatric DCM compared with NF controls. Using BN-PAGE and Western blot, as well as proteomic analysis of isolated supercomplex bands, we demonstrated interaction of the ETC supercomplex with FAO enzymes. Quantification of fatty acyl-CoAs was also performed in tissue from pediatric patients with DCM which demonstrated altered content of a subset of acyl-CoAs when compared to NF controls. We detected higher content of some C8, C10 and C12 CoAs in DCM compared with NF (P<0.05), with depletion of C18:1, C18:2, and C16 species (P<0.05). There was no difference between groups in free CoA or Acetyl-CoA. Taken together, these data suggest a potentially important interaction between the ETC supercomplex and long-chain β-oxidation enzymes, which may be altered on heart failure. We provide preliminary evidence for disrupted energy utilization in the failing pediatric heart.


2019 ◽  
Vol 126 (1) ◽  
pp. 30-38 ◽  
Author(s):  
Stephan Döring ◽  
Jessica Seeßle ◽  
Hongying Gan-Schreier ◽  
Bahador Javaheri ◽  
Li Jiao ◽  
...  

2018 ◽  
Vol 121 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Ke Wu ◽  
Runying Gao ◽  
Fang Tian ◽  
Yingyi Mao ◽  
Bei Wang ◽  
...  

AbstractThis study quantified the fatty acid profile with emphasis on the stereo-specifically numbered (sn) 2 positional distribution in TAG and the composition of main phospholipids at different lactation stages. Colostrum milk (n 70), transitional milk (n 96) and mature milk (n 82) were obtained longitudinally from healthy lactating women in Shanghai. During lactation, total fatty acid content increased, with SFA dominating in fatty acid profile. A high ratio of n-6:n-3 PUFA was observed as 11:1 over lactation due to the abundance of linoleic acid in Chinese human milk. As the main SFA, palmitic acid showed absolute sn-2 selectivity, while oleic acid, linoleic acid and α-linolenic acid, the main unsaturated fatty acids, were primarily esterified at the sn-1 and sn-3 positions. Nervonic acid and C22 PUFA including DHA were more enriched in colostrum with an sn-2 positional preference. A total of three dominant phospholipids (phosphatidylethanolamine (PE), phosphatidylcholine (PC) and sphingomyelin (SM)) were analysed in the collected samples, and each showed a decline in amount over lactation. PC was the dominant compound followed by SM and PE. With prolonged breast-feeding time, percentage of PE in total phospholipids remained constant, but PC decreased, and SM increased. Results from this study indicated a lipid profile different from Western reports and may aid the development of future infant formula more suitable for Chinese babies.


Sign in / Sign up

Export Citation Format

Share Document