The involvement of hydrogen peroxide in UV-B-inhibited pollen germination and tube growth of Paeonia suffruticosa and Paulownia tomentosa in vitro

2006 ◽  
Vol 49 (2-3) ◽  
pp. 199-208 ◽  
Author(s):  
Jun-Min He ◽  
Zhi-Hui Liu ◽  
Han Xu ◽  
Xiao-Ping She ◽  
Chen Huang
2011 ◽  
Vol 343-344 ◽  
pp. 347-350
Author(s):  
Yuan Hua Zhang ◽  
Xiao Ping She

Role of nitric oxide(NO) and hydrogen peroxide(H2O2) in eATP-inhibited reduction of in vitro pollen germination and tube growth of Paulownia tomentosa Steud. were studied. Results showed that exposure of the pollen to a series of eATP (0.2, 0.4, 0.6, 0.8, 1.0 mM) concentration for 3h resulted in not only the reduction of pollen germination but also the reduction of tube growth. Also, NOS inhibitor NG-nitro-L-Arg-methyl eater (L-NAME ), NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3- oxide(c-PTIO) and two scavengers of H2O2, ascorbic acid (ASC) and catalase (CAT) not only largely prevented eATP-inhibited pollen germination but also tube growth. These results indicated that NO and H2O2are involved in eATP inhibited pollen germination and tube growth.


2007 ◽  
Vol 0 (0) ◽  
pp. 070703023425001-??? ◽  
Author(s):  
Jun-Min He ◽  
Xiao-Ling Bai ◽  
Rui-Bin Wang ◽  
Bing Cao ◽  
Xiao-Ping She

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Biying Dong ◽  
Qing Yang ◽  
Zhihua Song ◽  
Lili Niu ◽  
Hongyan Cao ◽  
...  

AbstractMature pollen germinates rapidly on the stigma, extending its pollen tube to deliver sperm cells to the ovule for fertilization. The success of this process is an important factor that limits output. The flavonoid content increased significantly during pollen germination and pollen tube growth, which suggests it may play an important role in these processes. However, the specific mechanism of this involvement has been little researched. Our previous research found that hyperoside can prolong the flowering period of Abelmoschus esculentus (okra), but its specific mechanism is still unclear. Therefore, in this study, we focused on the effect of hyperoside in regulating the actin-depolymerizing factor (ADF), which further affects the germination and growth of pollen. We found that hyperoside can prolong the effective pollination period of okra by 2–3-fold and promote the growth of pollen tubes in the style. Then, we used Nicotiana benthamiana cells as a research system and found that hyperoside accelerates the depolymerization of intercellular microfilaments. Hyperoside can promote pollen germination and pollen tube elongation in vitro. Moreover, AeADF1 was identified out of all AeADF genes as being highly expressed in pollen tubes in response to hyperoside. In addition, hyperoside promoted AeADF1-mediated microfilament dissipation according to microfilament severing experiments in vitro. In the pollen tube, the gene expression of AeADF1 was reduced to 1/5 by oligonucleotide transfection. The decrease in the expression level of AeADF1 partially reduced the promoting effect of hyperoside on pollen germination and pollen tube growth. This research provides new research directions for flavonoids in reproductive development.


1989 ◽  
Vol 37 (5) ◽  
pp. 429 ◽  
Author(s):  
BM Potts ◽  
JB Marsden-Smedley

The effect of boric acid (0-450 ppm) and sucrose (0-40%) on pollen germination and pollen tube growth in Eucalyptus globulus, E. morrisbyi, E. ovata and E. tirnigera was examined in vitro. Over the con- centrations tested, sucrose had by far the largest effect upon both pollen germination and tube lengths. The optimum sucrose concentration for pollen germination (30%) and pollen tube growth (20%) differed markedly with very little (<lo%) germination occurring in the absence of sucrose. The interaction of sucrose and boric acid was significant. However, in general both pollen germination and pollen tube growth were increased by the addition of up to 100 ppm boric acid, but above this level the response plateauxed. The four species differed significantly in their pattern of response to both boric acid and sucrose and the predicted optima derived from analysis of response surfaces differed between species. The predicted sucrose concentration for optimal germination and growth of E. urnigera pollen was consistently less than the other species and in terms of the optimal level of boric acid for pollen tube growth species can be ranked in the order E. globulus > E. ovata > E. morrisbyi = E. urnigera. Pollen germination and tube growth of all four species on a medium comprising 20% sucrose and 200 ppm boric acid would not differ significantly from the observed maximum response of each species and this could suffice as a generalised medium. However, if only percentage germination is to be assessed 30% sucrose would be preferable. It is argued that subtle interspecific differences in optimal in vitro con- ditions for pollen germination and pollen tube growth are likely to reflect differences in pollen physiology which in vivo may have important implications for the success of hybridisation where pollen competition occurs.


2021 ◽  
Vol 74 ◽  
Author(s):  
Thomas Sawidis ◽  
Gülriz Baycu ◽  
Elżbieta Weryszko-Chmielewska ◽  
Aneta Sulborska

Abstract In vitro culture of Lilium longiflorum pollen grains was carried out to determine the role of manganese in pollen germination and pollen tube growth. Pollen germination was adversely affected by the presence of manganese (>10 −8 M), whereas low concentrations (10 −12 –10 −10 M) stimulated the process. Manganese caused morphological anomalies during tube growth, characterized by irregular pollen tube thickening and swollen tips. The main effect was the anomalous cell wall formation at the tip, in which the presence of several organelles reduced the number of secretory vesicles. A loose network of fibrillar material and spherical aggregates, mostly in the tip region, was detected, and this material was progressively loosened into the surrounding medium. As a response to potential toxicity, the excess manganese was isolated in vacuoles, which formed an internal barrier against penetration of manganese to the tip area. Elevated manganese concentrations might affect plant reproduction, resulting in anomalies in gamete development. Consequently, the loss in genetic diversity and decreased fruit set ultimately lower yield.


2000 ◽  
Vol 125 (2) ◽  
pp. 265-270 ◽  
Author(s):  
A.M.S. Nyomora ◽  
P.H. Brown ◽  
K. Pinney ◽  
V.S. Polito

The effect of boron (B) on in vivo and in vitro development of almond [Prunus dulcis (Mill.) D.A. Webb (syn. P. amygdalus Batsch)] pollen and pollen tubes and the resultant effect on fruit set was studied in mature trees. The cultivars Mono (pistil donor) and Butte (pollinizer) in an orchard with low soil B in Fresno, California were sprayed with B at 0, 0.8, 1.7, or 2.5 kg·ha-1 during Fall 1993. Pollen viability as indicated by the fluorescein diacetate method (FDA) was >85% and was not affected by field-applied B, however, in vivo pollen germination and tube growth were enhanced by foliar-applied B. More effect of applied B on in vivo growth appeared as pollen tubes progressed toward the ovary. For in vitro germination, foliar-applied B reduced bursting of tubes, and addition of B to the culture media significantly increased pollen germination and pollen tube growth.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 102 ◽  
Author(s):  
Seif Fragallah ◽  
Sizu Lin ◽  
Nuo Li ◽  
Elly Ligate ◽  
Yu Chen

In vitro pollen germination provides a novel approach and strategy to accelerate genetic improvement of tree breeding. Studies about pollen germination and tube growth of Chinese fir are limited. Therefore, this study aimed to investigate the effects of sucrose, boric acid, pH, and time of incubation on pollen germination and tube growth. Pollen from 9 clones were selected. In vitro germination was performed in basic media as control, and in different concentrations of sucrose (0, 10 and 15%), boric acid (0.01, 0.1 and 0.2%), and pH levels (4.5, 5 and 7). Pollen germination rates and tube growth were recorded periodically at 1, 12, 24, and 48 h. The results showed that sucrose imposes significant effects on pollen germination and tube growth. The effects are most obvious at concentration of 15%. Boric acid significantly promoted germination and tube growth. The promotion was most notable in lower concentration of 0.01%. The media adjusted to pH 7.0 boosted the germination and pollen tube growth. The optimum time of incubation was 24 and 48 h for pollen germination and tube growth, respectively. Sucrose, pH, and time of incubation were positively correlated, whereas boric acid negatively correlated with pollen germination and tube growth. This study provided experimental evidences for selecting viable pollens for Chinese fir breeding.


Sign in / Sign up

Export Citation Format

Share Document