scholarly journals Characterization of two cis-acting elements, P1BS and W-box, in the regulation of OsPT6 responsive to phosphors deficiency

Author(s):  
Qingchun Zhao ◽  
Zhenzhen Luo ◽  
Jiadong Chen ◽  
Hongfang Jia ◽  
Penghui Ai ◽  
...  

AbstractPhosphorus (P) deficiency is one of the major nutrient stresses restricting plant growth. The uptake of P by plants from soil is mainly mediated by the phosphate (Pi) transporters belonging to the PHT1 family. Multiple PHT1 genes from diverse plant species have been shown to be strongly up-regulated upon Pi starvation, however, the underlying mechanisms for the Pi-starvation-induced (PSI) up-regulation have not been well deciphered for most Pi transporter genes. Here, we reported a detailed dissection of the promoter activity of a PSI rice Pi transporter gene OsPT6, using the β-glucuronidase (GUS) reporter gene. OsPT6 promoter could drive GUS expression strongly in both roots and blades of rice plants grown under low P, but not high P. Cis-acting element analysis identified one copy of the P1BS motif and two copies of the W-box motif in OsPT6 promoter. Targeted deletion of the P1BS motif caused almost complete abolition of GUS induction in response to Pi starvation, irrespective of the presence or absence of the W-box motif, Four repeats of the P1BS motif fused to the CaMV35S minimal promoter was sufficient to induce GUS expression responsive to Pi starvation. Targeted deletion of the upstream W-box motif (W1) did not affect the GUS expression activity compared with the full-length OsPT6 promoter, while targeted deletion of the downstream W-box motif (W2) or both of the W-box motifs remarkably reduced the GUS induction rate upon Pi starvation. Our results proposed that the PSI response of OsPT6 was positively regulated by at least two elements, the sole P1BS and the downstream W-box, in its promoter, and the W-box-mediated up-regulation of OsPT6 might be highly dependent on the P1BS motif.

2020 ◽  
Author(s):  
Jiajia Luo ◽  
Yunxi Liu ◽  
Huikai Zhang ◽  
Jinpeng Wang ◽  
Zhijian Chen ◽  
...  

Abstract Background: Phosphorus (P) deficiency is one of the major constraints limiting plant growth, especially in acid soils. Stylosanthes (stylo) is a pioneer tropical legume with excellent adaptability to low P stress, but its underlying mechanisms remain largely unknown.Results: In this study, the physiological, molecular and metabolic changes in stylo responding to phosphate (Pi) starvation were investigated. Under low P condition, the growth of stylo root was enhanced, which was attributed to the up-regulation of expansin genes participating in root growth. Metabolic profiling analysis showed that a total of 256 metabolites with differential accumulations were identified in stylo roots response to P deficiency, which mainly included flavonoids, sugars, nucleotides, amino acids, phenylpropanoids and phenylamides. P deficiency led to significant reduction in the accumulation of phosphorylated metabolites (e.g., P-containing sugars, nucleotides and cholines), suggesting that internal P utilization was enhanced in stylo roots subjected to low P stress. However, flavonoid metabolites, such as kaempferol, daidzein and their glycoside derivatives, were increased in P-deficient stylo roots. Furthermore, the qRT-PCR analysis showed that a set of genes involved in flavonoids synthesis were found to be up-regulated by Pi starvation in stylo roots. In addition, the abundances of phenolic acids and phenylamides were significantly increased in stylo roots during P deficiency. The increased accumulation of the metabolites in stylo roots, such as flavonoids, phenolic acids and phenylamides, might facilitate P solubilization and cooperate with beneficial microorganisms in rhizosphere, and thus contributing to P acquisition and utilization in stylo.Conclusions: These results suggest that stylo plants cope with P deficiency by modulating root morphology, scavenging internal Pi from phosphorylated metabolites and increasing accumulation of flavonoids, phenolic acids and phenylamides. This study provides valuable insights into the complex responses and adaptive mechanisms of stylo roots to P deficiency.


2019 ◽  
Author(s):  
Jiajia Luo ◽  
Yunxi Liu ◽  
Huikai Zhang ◽  
Jinpeng Wang ◽  
Zhijian Chen ◽  
...  

Abstract Background: Phosphorus (P) deficiency is one of the major constraints limiting plant growth, especially in acid soils. Stylosanthes (stylo) is a pioneer tropical legume with excellent adaptability to low P stress, but its underlying mechanisms remain largely unknown. Results: In this study, the physiological, molecular and metabolic changes in stylo responding to phosphate (Pi) starvation were investigated. Under low P condition, the root growth in stylo was significantly enhanced, which was accompanied with up-regulation of expansin genes participating in cell wall loosening. Metabolic profiling analysis showed that a total of 256 metabolites with differential accumulation were identified in stylo roots responding to P deficiency, which mainly include flavonoids, sugars, nucleotides, amino acids, phenylpropanoids and phenylamides. P deficiency led to significant reduction in the accumulation of phosphorylated metabolites (e.g., P-containing sugars, nucleotides and cholines), suggesting that internal P utilization was enhanced in stylo roots. However, flavonoid metabolites, such as kaempferol, daidzein and their glycoside derivatives, were significantly increased in P-deficient stylo roots. Furthermore, the transcripts of various genes involved in flavonoids synthesis were found to be up-regulated by Pi starvation in stylo roots. In addition, the abundance of phenolic acids and phenylamides was significantly increased in stylo roots during P deficiency. The enhanced accumulation of the metabolites in stylo roots, such as flavonoids, phenolic acids and phenylamides, might facilitate P solubilization and cooperate with beneficial microorganisms in rhizosphere, and thus contributing to P acquisition and utilization in stylo. Conclusions: These results suggest that stylo plants cope with P deficiency by modulating root morphology, scavenging internal Pi from phosphorylated metabolites and enhancing accumulation of flavonoids, phenolic acids and phenylamides. This study provides valuable insights into the complex responses and adaptive mechanisms of stylo to P deficiency.


2020 ◽  
Author(s):  
Jiajia Luo ◽  
Yunxi Liu ◽  
Huikai Zhang ◽  
Jinpeng Wang ◽  
Zhijian Chen ◽  
...  

Abstract Background: Phosphorus (P) deficiency is one of the major constraints limiting plant growth, especially in acid soils. Stylosanthes (stylo) is a pioneer tropical legume with excellent adaptability to low P stress, but its underlying mechanisms remain largely unknown. Results: In this study, the physiological, molecular and metabolic changes in stylo responding to phosphate (Pi) starvation were investigated. Under low P condition, the root growth in stylo was significantly enhanced, which was accompanied with up-regulation of expansin genes participating in cell wall loosening. Metabolic profiling analysis showed that a total of 256 metabolites with differential accumulation were identified in stylo roots responding to P deficiency, which mainly include flavonoids, sugars, nucleotides, amino acids, phenylpropanoids and phenylamides. P deficiency led to significant reduction in the accumulation of phosphorylated metabolites (e.g., P-containing sugars, nucleotides and cholines), suggesting that internal P utilization was enhanced in stylo roots. However, flavonoid metabolites, such as kaempferol, daidzein and their glycoside derivatives, were significantly increased in P-deficient stylo roots. Furthermore, the transcripts of various genes involved in flavonoids synthesis were found to be up-regulated by Pi starvation in stylo roots. In addition, the abundance of phenolic acids and phenylamides was significantly increased in stylo roots during P deficiency. The enhanced accumulation of the metabolites in stylo roots, such as flavonoids, phenolic acids and phenylamides, might facilitate P solubilization and cooperate with beneficial microorganisms in rhizosphere, and thus contributing to P acquisition and utilization in stylo. Conclusions: These results suggest that stylo plants cope with P deficiency by modulating root morphology, scavenging internal Pi from phosphorylated metabolites and enhancing accumulation of flavonoids, phenolic acids and phenylamides. This study provides valuable insights into the complex responses and adaptive mechanisms of stylo to P deficiency.


2020 ◽  
Author(s):  
Jiajia Luo ◽  
Yunxi Liu ◽  
Huikai Zhang ◽  
Jinpeng Wang ◽  
Zhijian Chen ◽  
...  

Abstract Background: Phosphorus (P) deficiency is one of the major constraints limiting plant growth, especially in acid soils. Stylosanthes (stylo) is a pioneer tropical legume with excellent adaptability to low P stress, but its underlying mechanisms remain largely unknown. Results: In this study, the physiological, molecular and metabolic changes in stylo responding to phosphate (Pi) starvation were investigated. Under low P condition, the root growth in stylo was significantly enhanced, which was accompanied with up-regulation of expansin genes participating in cell wall loosening. Metabolic profiling analysis showed that a total of 256 metabolites with differential accumulation were identified in stylo roots responding to P deficiency, which mainly include flavonoids, sugars, nucleotides, amino acids, phenylpropanoids and phenylamides. P deficiency led to significant reduction in the accumulation of phosphorylated metabolites (e.g., P-containing sugars, nucleotides and cholines), suggesting that internal P utilization was enhanced in stylo roots. However, flavonoid metabolites, such as kaempferol, daidzein and their glycoside derivatives, were significantly increased in P-deficient stylo roots. Furthermore, the transcripts of various genes involved in flavonoids synthesis were found to be up-regulated by Pi starvation in stylo roots. In addition, the abundance of phenolic acids and phenylamides was significantly increased in stylo roots during P deficiency. The enhanced accumulation of the metabolites in stylo roots, such as flavonoids, phenolic acids and phenylamides, might facilitate P solubilization and cooperate with beneficial microorganisms in rhizosphere, and thus contributing to P acquisition and utilization in stylo. Conclusions: These results suggest that stylo plants cope with P deficiency by modulating root morphology, scavenging internal Pi from phosphorylated metabolites and enhancing accumulation of flavonoids, phenolic acids and phenylamides. This study provides valuable insights into the complex responses and adaptive mechanisms of stylo to P deficiency.


2019 ◽  
Author(s):  
Jiajia Luo ◽  
Yunxi Liu ◽  
Huikai Zhang ◽  
Jinpeng Wang ◽  
Zhijian Chen ◽  
...  

Abstract Background: Phosphorus (P) deficiency is one of the major constraints limiting plant growth, especially in acid soils. Stylosanthes (stylo) is a pioneer tropical legume with excellent adaptability to low P stress, but its underlying mechanisms remain largely unknown. Results: In this study, the physiological, molecular and metabolic changes in stylo responding to phosphate (Pi) starvation were investigated. Under low P condition, the root growth in stylo was significantly enhanced, which was accompanied with up-regulation of expansin genes participating in cell wall loosening. Metabolic profiling analysis showed that a total of 256 metabolites with differential accumulation were identified in stylo roots responding to P deficiency, which mainly include flavonoids, sugars, nucleotides, amino acids, phenylpropanoids and phenylamides. P deficiency led to significant reduction in the accumulation of phosphorylated metabolites (e.g., P-containing sugars, nucleotides and cholines), suggesting that internal P utilization was enhanced in stylo roots. However, flavonoid metabolites, such as kaempferol, daidzein and their glycoside derivatives, were significantly increased in P-deficient stylo roots. Furthermore, the transcripts of various genes involved in flavonoids synthesis were found to be up-regulated by Pi starvation in stylo roots. In addition, the abundance of phenolic acids and phenylamides was significantly increased in stylo roots during P deficiency. The enhanced accumulation of the metabolites in stylo roots, such as flavonoids, phenolic acids and phenylamides, might facilitate P solubilization and cooperate with beneficial microorganisms in rhizosphere, and thus contributing to P acquisition and utilization in stylo. Conclusions: These results suggest that stylo plants cope with P deficiency by modulating root morphology, scavenging internal Pi from phosphorylated metabolites and enhancing accumulation of flavonoids, phenolic acids and phenylamides. This study provides valuable insights into the complex responses and adaptive mechanisms of stylo to P deficiency.


2018 ◽  
Vol 19 (10) ◽  
pp. 2964 ◽  
Author(s):  
Mohammad Karim ◽  
Xiaoying Dong ◽  
Lu Zheng ◽  
Renfang Shen ◽  
Ping Lan

Low availability of inorganic phosphate (Pi), together with aluminum (Al), is a major constraint for plant growth and development in acidic soils. To investigate whether or not Al-resistant cultivars can perform better under Pi deficiency, we chose two wheat cultivars with different Al-responses—Atlas 66, being Al-tolerant, and Scout 66, which is Al-sensitive—and analyzed their responses to Pi deficiency. Results showed that, unexpectedly, the Al-sensitive cultivar Scout 66 contained comparatively higher amount of soluble phosphate (Pi) and total phosphorus (P) both in the roots and in the shoots than Atlas 66 under P deficiency. In addition, Scout 66 exhibited higher root biomass, root volume, and root tip numbers, compared with Atlas 66. The expression of Pi-responsive marker genes, TaIPS1, TaSPX3, and TaSQD2 was strongly induced in both cultivars, but the extents of induction were higher in Scout 66 than in Atlas 66 under long-term Pi starvation. Taken together, our results suggest that the Al-sensitive cultivar Scout 66 performed much better under sole Pi starvation, which sets the following experimental stage to uncover the underlying mechanisms of why Scout 66 can display better under Pi deficiency. Our study also raises an open question whether Al-resistant plants are more sensitive to Pi deficiency.


2010 ◽  
Vol 23 (2) ◽  
pp. 176-186 ◽  
Author(s):  
Miin-Huey Lee ◽  
Chiu-Min Chiu ◽  
Tatiana Roubtsova ◽  
Chien-Ming Chou ◽  
Richard M. Bostock

A 4.5-kb genomic DNA containing a Monilinia fructicola cutinase gene, MfCUT1, and its flanking regions were isolated and characterized. Sequence analysis revealed that the genomic MfCUT1 carries a 63-bp intron and a promoter region with several transcription factor binding sites that may confer redox regulation of MfCUT1 expression. Redox regulation is indicated by the effect of antioxidants, shown previously to inhibit MfCUT1 gene expression in cutin-induced cultures, and in the present study, where H2O2 enhanced MfCUT1 gene expression. A β-glucuronidase (GUS) reporter gene (gusA) was fused to MfCUT1 under the control of the MfCUT1 promoter, and this construct was then used to generate an MfCUT1-GUS strain by Agrobacterium spp.-mediated transformation. The appearance of GUS activity in response to cutin and suppression of GUS activity by glucose in cutinase-inducing medium verified that the MfCUT1-GUS fusion protein was expressed correctly under the control of the MfCUT1 promoter. MfCUT1-GUS expression was detected following inoculation of peach and apple fruit, peach flower petals, and onion epidermis, and during brown rot symptom development on nectarine fruit at a relatively late stage of infection (24 h postinoculation). However, semiquantitative reverse-transcriptase polymerase chain reaction provided sensitive detection of MfCUT1 expression within 5 h of inoculation in both almond and peach petals. MfCUT1-GUS transformants expressed MfCUT1 transcripts at twice the level as the wild type and caused more severe symptoms on Prunus flower petals, consistent with MfCUT1 contributing to the virulence of M. fructicola.


2005 ◽  
Vol 86 (6) ◽  
pp. 1851-1860 ◽  
Author(s):  
Naomi Shirasawa-Seo ◽  
Yoshitaka Sano ◽  
Shigeo Nakamura ◽  
Taka Murakami ◽  
Shigemi Seo ◽  
...  

Predicted promoter regions of Milk vetch dwarf virus (MDV) components (C1–C11) were isolated and fused with a β-glucuronidase (GUS) reporter gene and the characteristics of the promoters were examined. In transgenic tobacco calli, promoters of MDV C4 (encoding a cell-cycle link protein), C5 and C7 (both encoding unknown proteins), C6 (encoding a nuclear-shuttle protein) and C8 (encoding a movement protein) generated a stronger level of GUS expression than the Cauliflower mosaic virus 35S RNA promoter (P35S). In leaves of transgenic tobacco plants, the promoters of C5 and C8 conferred a level of GUS activity comparable to that of P35S. Histochemical GUS analysis showed that the promoters of C4–C9, the latter encoding a capsid protein, were active in phloem and meristematic tissue. The promoter of C8 was also active in mesophyll and cortex cell types. A low level of activity was found for the promoters of C11, which encodes a master replication-initiator protein (Rep), and C1, C2, C3 and C10, which encode additional Reps, in both transgenic tobacco calli and plants.


2020 ◽  
Vol 21 (6) ◽  
pp. 1909
Author(s):  
Dandan Li ◽  
Rucong Xu ◽  
Dong Lv ◽  
Chunlong Zhang ◽  
Hong Yang ◽  
...  

The regulatory mechanisms of pollen development have potential value for applications in agriculture, such as better understanding plant reproductive regularity. Pollen-specific promoters are of vital importance for the ectopic expression of functional genes associated with pollen development in plants. However, there is a limited number of successful applications using pollen-specific promoters in genetic engineering for crop breeding and hybrid generation. Our previous work led to the identification and isolation of the OsSUT3 promoter from rice. In this study, to analyze the effects of different putative regulatory motifs in the OsSUT3 promoter, a series of promoter deletions were fused to a GUS reporter gene and then stably introduced into rice and Arabidopsis. Histochemical GUS analysis of transgenic plants revealed that p385 (from −385 to −1) specifically mediated maximal GUS expression in pollen tissues. The S region (from −385 to −203) was the key region for controlling the pollen-specific expression of a downstream gene. The E1 (−967 to −606), E2 (−202 to −120), and E3 (−119 to −1) regions enhanced ectopic promoter activity to different degrees. Moreover, the p385 promoter could alter the expression pattern of the 35S promoter and improve its activity when they were fused together. In summary, the p385 promoter, a short and high-activity promoter, can function to drive pollen-specific expression of transgenes in monocotyledon and dicotyledon transformation experiments.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Mohamed El-Soda ◽  
Charles Neris Moreira ◽  
Nakai Goredema-Matongera ◽  
Diaan Jamar ◽  
Maarten Koornneef ◽  
...  

Abstract Background Phosphorus is often present naturally in the soil as inorganic phosphate, Pi, which bio-availability is limited in many ecosystems due to low soil solubility and mobility. Plants respond to low Pi with a Pi Starvation Response, involving Pi sensing and long-distance signalling. There is extensive cross-talk between Pi homeostasis mechanisms and the homeostasis mechanism for other anions in response to Pi availability. Results Recombinant Inbred Line (RIL) and Genome Wide Association (GWA) mapping populations, derived from or composed of natural accessions of Arabidopsis thaliana, were grown under sufficient and deficient Pi supply. Significant treatment effects were found for all traits and significant genotype x treatment interactions for the leaf Pi and sulphate concentrations. Using the RIL/QTL population, we identified 24 QTLs for leaf concentrations of Pi and other anions, including a major QTL for leaf sulphate concentration (SUL2) mapped to the bottom of chromosome (Chr) 1. GWA mapping found 188 SNPs to be associated with the measured traits, corresponding to 152 genes. One of these SNPs, associated with leaf Pi concentration, mapped to PP2A-1, a gene encoding an isoform of the catalytic subunit of a protein phosphatase 2A. Of two additional SNPs, associated with phosphate use efficiency (PUE), one mapped to AT5G49780, encoding a leucine-rich repeat protein kinase involved in signal transduction, and the other to SIZ1, a gene encoding a SUMO E3 ligase, and a known regulator of P starvation-dependent responses. One SNP associated with leaf sulphate concentration was found in SULTR2;1, encoding a sulphate transporter, known to enhance sulphate translocation from root to shoot under P deficiency. Finally, one SNP was mapped to FMO GS-OX4, a gene encoding glucosinolate S-oxygenase involved in glucosinolate biosynthesis, which located within the confidence interval of the SUL2 locus. Conclusion We identified several candidate genes with known functions related to anion homeostasis in response to Pi availability. Further molecular studies are needed to confirm and validate these candidate genes and understand their roles in examined traits. Such knowledge will contribute to future breeding for improved crop PUE .


Sign in / Sign up

Export Citation Format

Share Document