pi starvation
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 50)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Xinlong Xiao ◽  
Jieqiong Zhang ◽  
Viswanathan Satheesh ◽  
Fanxiao Meng ◽  
Wenlan Gao ◽  
...  

Abstract Coordinated distribution of Pi between roots and shoots is an important process that plants use to maintain Pi homeostasis. SHR (SHORT-ROOT) is well-characterized for its function in root radial patterning1-3. Here, we demonstrate a new role of SHR in controlling phosphate (Pi) allocation from roots to shoots by regulating PHOSPHATE1 (PHO1) in the root differentiation zone. We recovered a weak mutant allele of SHR in Arabidopsis which accumulates much less Pi in the shoot and shows constitutive Pi starvation response (PSR) under Pi-sufficient condition. Besides, Pi starvation suppresses SHR protein accumulation and releases its inhibition on the HD-ZIP Ⅲ transcription factor PHB. PHB accumulates and directly binds the promoter of PHO2 to upregulate its transcription, resulting in PHO1 degradation in the xylem-pole pericycle cells. Our findings reveal a previously unrecognized mechanism of how plants repress Pi translocation from roots to shoots in response to Pi starvation.


2021 ◽  
Vol 22 (22) ◽  
pp. 12348
Author(s):  
Xiaohui Mo ◽  
Mengke Zhang ◽  
Zeyu Zhang ◽  
Xing Lu ◽  
Cuiyue Liang ◽  
...  

Phosphorus (P) is an essential macronutrient for plant growth and development. Among adaptive strategies of plants to P deficiency, increased anthocyanin accumulation is widely observed in plants, which is tightly regulated by a set of genes at transcription levels. However, it remains unclear whether other key regulators might control anthocyanin synthesis through protein modification under P-deficient conditions. In the study, phosphate (Pi) starvation led to anthocyanin accumulations in soybean (Glycine max) leaves, accompanied with increased transcripts of a group of genes involved in anthocyanin synthesis. Meanwhile, transcripts of GmCSN5A/B, two members of the COP9 signalosome subunit 5 (CSN5) family, were up-regulated in both young and old soybean leaves by Pi starvation. Furthermore, overexpressing GmCSN5A and GmCSN5B in Arabidopsis thaliana significantly resulted in anthocyanin accumulations in shoots, accompanied with increased transcripts of gene functions in anthocyanin synthesis including AtPAL, AtCHS, AtF3H, AtF3′H, AtDFR, AtANS, and AtUF3GT only under P-deficient conditions. Taken together, these results strongly suggest that P deficiency leads to increased anthocyanin synthesis through enhancing expression levels of genes involved in anthocyanin synthesis, which could be regulated by GmCSN5A and GmCSN5B.


2021 ◽  
Author(s):  
Xiangxiang Meng ◽  
Wenfeng Li ◽  
Renfang Shen ◽  
Ping Lan

Abstract Phosphate (Pi) and iron (Fe) are two essential mineral nutrients for plant growth and development. Pi starvation triggers the Fe local redistribution and over-accumulation, resulting in the reduction of the primary root, while represses the expression of Fe uptake genes. Nevertheless, the antagonistic mechanism between P and Fe nutrition in plant remain not addressed. Here, the effect of the upregulated expression of Fe regulators IMA1 and bHLH104 driven by the different-type promoters (proCaMV 35S, the promoters of Pi-starvation responsive genes proIPS1 and proPHT1;4) in response to Pi starvation was investigated in Arabidopsis. The results showed that the expression of Fe uptake genes IRT1 and FRO2 was successfully upregulated in proIPS1::IMA1, proPHT1;4::IMA1 and proIPS1::bHLH104 under Pi starvation while decreased in pro35S::IMA1, pro35S::bHLH104 and proPHT1;4::bHLH104, compared with that in the corresponding plants under Pi sufficiency. Although the length and Fe distribution in roots of them didn’t have significant difference with wild type under Pi starvation, the Fe distribution and total Fe contents were significantly increased in shoots of proIPS1::IMA1, proPHT1;4::IMA1 and proIPS1::bHLH104 while were decreased in proPHT1;4::bHLH104. The higher Fe concentrations in the Pi-starved transgenic plants also conferred the obviously tolerance to Fe deficiency. Their biomasses and total P concentrations showed no difference with wild type, regardless of Pi sufficiency or deficiency. Therefore, this approach would be a novel manipulation to modify Fe nutrient via coupling with Pi starvation in plants.


2021 ◽  
Vol 12 ◽  
Author(s):  
Noura Bechtaoui ◽  
Muhammad Kabir Rabiu ◽  
Anas Raklami ◽  
Khalid Oufdou ◽  
Mohamed Hafidi ◽  
...  

The importance of phosphorus in the regulation of plant growth function is well studied. However, the role of the inorganic phosphate (Pi) molecule in the mitigation of abiotic stresses such as drought, salinity, heavy metal, heat, and acid stresses are poorly understood. We revisited peer-reviewed articles on plant growth characteristics that are phosphorus (P)-dependently regulated under the sufficient-P and low/no-P starvation alone or either combined with one of the mentioned stress. We found that the photosynthesis rate and stomatal conductance decreased under Pi-starved conditions. The total chlorophyll contents were increased in the P-deficient plants, owing to the lack of Pi molecules to sustain the photosynthesis functioning, particularly, the Rubisco and fructose-1,6-bisphosphatase function. The dry biomass of shoots, roots, and P concentrations were significantly reduced under Pi starvation with marketable effects in the cereal than in the legumes. To mitigate P stress, plants activate alternative regulatory pathways, the Pi-dependent glycolysis, and mitochondrial respiration in the cytoplasm. Plants grown under well-Pi supplementation of drought stress exhibited higher dry biomass of shoots than the no-P treated ones. The Pi supply to plants grown under heavy metals stress reduced the metal concentrations in the leaves for the cadmium (Cd) and lead (Pb), but could not prevent them from absorbing heavy metals from soils. To detoxify from heavy metal stress, plants enhance the catalase and ascorbate peroxidase activity that prevents lipid peroxidation in the leaves. The HvPIP and PHO1 genes were over-expressed under both Pi starvation alone and Pi plus drought, or Pi plus salinity stress combination, implying their key roles to mediate the stress mitigations. Agronomy Pi-based interventions to increase Pi at the on-farm levels were discussed. Revisiting the roles of P in growth and its better management in agricultural lands or where P is supplemented as fertilizer could help the plants to survive under abiotic stresses.


2021 ◽  
Vol 7 (11) ◽  
pp. 892
Author(s):  
Xianan Xie ◽  
Xiaoning Fan ◽  
Hui Chen ◽  
Ming Tang

Zinc (Zn) is one of the most essential micronutrients for plant growth and metabolism, but Zn excess can impair many basic metabolic processes in plant cells. In agriculture, crops often experience low phosphate (Pi) and high Zn double nutrient stresses because of inordinate agro-industrial activities, while the dual benefit of arbuscular mycorrhizal (AM) fungi protects plants from experiencing both deficient and toxic nutrient stresses. Although crosstalk between Pi and Zn nutrients in plants have been extensively studied at the physiological level, the molecular basis of how Pi starvation triggers Zn over-accumulation in plants and how AM plants coordinately modulate the Pi and Zn nutrient homeostasis remains to be elucidated. Here, we report that a novel AsZIP2 gene, a Chinese milk vetch (Astragalus sinicus) member of the ZIP gene family, participates in the interaction between Pi and Zn nutrient homeostasis in plants. Phylogenetic analysis revealed that this AsZIP2 protein was closely related to the orthologous Medicago MtZIP2 and Arabidopsis AtZIP2 transporters. Gene expression analysis indicated that AsZIP2 was highly induced in roots by Pi starvation or Zn excess yet attenuated by arbuscular mycorrhization in a Pi-dependent manner. Subcellular localization and heterologous expression experiments further showed that AsZIP2 encoded a functional plasma membrane-localized transporter that mediated Zn uptake in yeast. Moreover, overexpression of AsZIP2 in A. sinicus resulted in the over-accumulation of Zn concentration in roots at low Pi or excessive Zn concentrations, whereas AsZIP2 silencing lines displayed an even more reduced Zn concentration than control lines under such conditions. Our results reveal that the AsZIP2 transporter functioned in Zn over-accumulation in roots during Pi starvation or high Zn supply but was repressed by AM symbiosis in a Pi-dependent manner. These findings also provide new insights into the AsZIP2 gene acting in the regulation of Zn homeostasis in mycorrhizal plants through Pi signal.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhijian Chen ◽  
Jianling Song ◽  
Xinyong Li ◽  
Jacobo Arango ◽  
Juan Andres Cardoso ◽  
...  

Abstract Background Phosphorus (P) is an essential macronutrient for plant growth that participates in a series of biological processes. Thus, P deficiency limits crop growth and yield. Although Stylosanthes guianensis (stylo) is an important tropical legume that displays adaptation to low phosphate (Pi) availability, its adaptive mechanisms remain largely unknown. Results In this study, differences in low-P stress tolerance were investigated using two stylo cultivars (‘RY2’ and ‘RY5’) that were grown in hydroponics. Results showed that cultivar RY2 was better adapted to Pi starvation than RY5, as reflected by lower values of relative decrease rates of growth parameters than RY5 at low-P stress, especially for the reduction of shoot and root dry weight. Furthermore, RY2 exhibited higher P acquisition efficiency than RY5 under the same P treatment, although P utilization efficiency was similar between the two cultivars. In addition, better root growth performance and higher leaf and root APase activities were observed with RY2 compared to RY5. Subsequent RNA-seq analysis revealed 8,348 genes that were differentially expressed under P deficient and sufficient conditions in RY2 roots, with many Pi starvation regulated genes associated with P metabolic process, protein modification process, transport and other metabolic processes. A group of differentially expressed genes (DEGs) involved in Pi uptake and Pi homeostasis were identified, such as genes encoding Pi transporter (PT), purple acid phosphatase (PAP), and multidrug and toxin extrusion (MATE). Furthermore, a variety of genes related to transcription factors and regulators involved in Pi signaling, including genes belonging to the PHOSPHATE STARVATION RESPONSE 1-like (PHR1), WRKY and the SYG1/PHO81/XPR1 (SPX) domain, were also regulated by P deficiency in stylo roots. Conclusions This study reveals the possible mechanisms underlying the adaptation of stylo to P deficiency. The low-P tolerance in stylo is probably manifested through regulation of root growth, Pi acquisition and cellular Pi homeostasis as well as Pi signaling pathway. The identified genes involved in low-P tolerance can be potentially used to design the breeding strategy for developing P-efficient stylo cultivars to grow on acid soils in the tropics.


Author(s):  
Su Deng ◽  
Jingyi Li ◽  
Zezhen Du ◽  
Zixuan Wu ◽  
Jian Yang ◽  
...  

The concentration and homeostasis of intracellular phosphate (Pi) are crucial for sustaining cell metabolism and growth. During short-term Pi starvation, intracellular Pi is maintained relatively constant at the expense of vacuolar Pi. After the vacuolar stored Pi is exhausted, the plant cells induce the synthesis of intracellular acid phosphatase (APase) to recycle Pi from expendable organic phosphate (Po). In this study, the expression, enzymatic activity and subcellular localization of ACID PHOSPHATASE 1 (OsACP1) were determined. OsACP1 expression is specifically induced in almost all cell types of leaves and roots under Pi stress conditions. OsACP1 encodes an acid phosphatase with broad Po substrates and localizes in the endoplasmic reticulum (ER) and Golgi apparatus (GA). Phylogenic analysis demonstrates that OsACP1 has a similar structure with human acid phosphatase PHOSPHO1. Overexpression or mutation of OsACP1 affected Po degradation and utilization, which further influenced plant growth and productivity under both Pi-sufficient and Pi-deficient conditions. Moreover, overexpression of OsACP1 significantly affected intracellular Pi homeostasis and Pi starvation signalling. We concluded that OsACP1 is an active acid phosphatase that regulates rice growth under Pi stress conditions by recycling Pi from Po in the ER and GA.


2021 ◽  
Vol 7 (9) ◽  
pp. 765
Author(s):  
Amira Susana Nieva ◽  
Fernando Matías Romero ◽  
Alexander Erban ◽  
Pedro Carrasco ◽  
Oscar Adolfo Ruiz ◽  
...  

Root fungal endophytes are essential mediators of plant nutrition under mild stress conditions. However, variations in the rhizosphere environment, such as nutrient depletion, could result in a stressful situation for both partners, shifting mutualistic to nonconvenient interactions. Mycorrhizal fungi and dark septate endophytes (DSEs) have demonstrated their ability to facilitate phosphate (Pi) acquisition. However, few studies have investigated other plant–fungal interactions that take place in the root environment with regard to phosphate nutrition. In the present research work, we aimed to analyze the effect of extreme Pi starvation and the fungal endophyte Fusarium solani on the model Lotus japonicus and the crop L. tenuis. We conducted metabolomics analysis based on gas chromatography-mass spectrometry (GC-MS) on plant tissues under optimal conditions, severe Pi starvation and F.solani presence. By combining statistical and correlation network analysis strategies, we demonstrated the differential outcomes of the two plant species against the combination of treatments. The combination of nutritional stress and Fusarium presence activated significant modifications in the metabolism of L. japonicus affecting the levels of sugars, polyols and some amino acids. Our results display potential markers for further inspection of the factors related to plant nutrition and plant–fungal interactions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cheng Li ◽  
Kangning Li ◽  
Xinyi Liu ◽  
Hui Ruan ◽  
Mingming Zheng ◽  
...  

Phosphorus (P) is one of the essential macronutrients, whose deficiency limits the growth and development of plants. In this study, we investigated the possible role of GmWRKY46 in the phosphate (Pi) starvation stress tolerance of soybean. GmWRKY46 belonged to the group III subfamily of the WRKY transcription factor family, which was localized in the nucleus and had transcriptional activator activity. GmWRKY46 could be strongly induced by Pi starvation, especially in soybean roots. Overexpression of GmWRKY46 significantly enhanced tolerance to Pi starvation and lateral root development in transgenic Arabidopsis. RNA-seq analysis showed that overexpression of GmWRKY46 led to change in many genes related to energy metabolisms, stress responses, and plant hormone signal transduction in transgenic Arabidopsis. Among these differential expression genes, we found that overexpression of AtAED1 alone could enhance the tolerance of transgenic Arabidopsis to Pi starvation. Y1H and ChIP-qPCR analyses showed that GmWRKY46 could directly bind to the W-box motif of the AtAED1 promoter in vitro and in vivo. Furthermore, results from intact soybean composite plants with GmWRKY46 overexpression showed that GmWRKY46 was involved in hairy roots development and subsequently affected plant growth and Pi uptake. These results provide a basis for the molecular genetic breeding of soybean tolerant to Pi starvation.


Author(s):  
Bryden O’Gallagher ◽  
Mina Ghahremani ◽  
Kyla Stigter ◽  
Emma J L Walker ◽  
Michal Pyc ◽  
...  

Abstract A 35 kDa monomeric purple acid phosphatase (APase) was purified from cell wall extracts of Pi starved (–Pi) Arabidopsis thaliana suspension cells and identified as AtPAP17 (At3g17790) by mass spectrometry and N-terminal microsequencing. AtPAP17 was de novo synthesized and dual-localized to the secretome and/or intracellular fraction of –Pi or salt-stressed plants, or senescing leaves. Transiently expressed AtPAP17–green fluorescent protein localized to lytic vacuoles of the Arabidopsis suspension cells. No significant biochemical or phenotypical changes associated with AtPAP17 loss of function were observed in an atpap17 mutant during Pi deprivation, leaf senescence, or salinity stress. Nevertheless, AtPAP17 is hypothesized to contribute to Pi metabolism owing to its marked up-regulation during Pi starvation and leaf senescence, broad APase substrate selectivity and pH activity profile, and rapid repression and turnover following Pi resupply to –Pi plants. While AtPAP17 also catalyzed the peroxidation of luminol, which was optimal at pH 9.2, it exhibited a low Vmax and affinity for hydrogen peroxide relative to horseradish peroxidase. These results, coupled with absence of a phenotype in the salt-stressed or –Pi atpap17 mutant, do not support proposals that the peroxidase activity of AtPAP17 contributes to the detoxification of reactive oxygen species during stresses that trigger AtPAP17 up-regulation.


Sign in / Sign up

Export Citation Format

Share Document