scholarly journals Characteristics of the promoters derived from the single-stranded DNA components of Milk vetch dwarf virus in transgenic tobacco

2005 ◽  
Vol 86 (6) ◽  
pp. 1851-1860 ◽  
Author(s):  
Naomi Shirasawa-Seo ◽  
Yoshitaka Sano ◽  
Shigeo Nakamura ◽  
Taka Murakami ◽  
Shigemi Seo ◽  
...  

Predicted promoter regions of Milk vetch dwarf virus (MDV) components (C1–C11) were isolated and fused with a β-glucuronidase (GUS) reporter gene and the characteristics of the promoters were examined. In transgenic tobacco calli, promoters of MDV C4 (encoding a cell-cycle link protein), C5 and C7 (both encoding unknown proteins), C6 (encoding a nuclear-shuttle protein) and C8 (encoding a movement protein) generated a stronger level of GUS expression than the Cauliflower mosaic virus 35S RNA promoter (P35S). In leaves of transgenic tobacco plants, the promoters of C5 and C8 conferred a level of GUS activity comparable to that of P35S. Histochemical GUS analysis showed that the promoters of C4–C9, the latter encoding a capsid protein, were active in phloem and meristematic tissue. The promoter of C8 was also active in mesophyll and cortex cell types. A low level of activity was found for the promoters of C11, which encodes a master replication-initiator protein (Rep), and C1, C2, C3 and C10, which encode additional Reps, in both transgenic tobacco calli and plants.

Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 688
Author(s):  
Maiko Kato ◽  
Robert Harding ◽  
James Dale ◽  
Benjamin Dugdale

Geminiviruses and their diseases are a considerable economic threat to a vast number of crops worldwide. Investigating how and where these viruses replicate and accumulate in their hosts may lead to novel molecular resistance strategies. In this study, we used the Rep-inducible In Plant Activation (INPACT) expression platform, based on the genome of tobacco yellow dwarf virus (TYDV), to determine where this model mastrevirus replicates in its host tobacco. By developing an infectious clone of TYDV and optimizing its delivery by agroinfiltration, we first established an efficient artificial infection process. When delivered into transgenic tobacco plants containing a TYDV-based INPACT cassette encoding the β-glucuronidase (GUS) reporter, we showed the virus activates GUS expression. Histology revealed that reporter gene expression was limited to phloem-associated cell types suggesting TYDV replication has a restricted tissue tropism.


1998 ◽  
Vol 11 (6) ◽  
pp. 530-536 ◽  
Author(s):  
James H. Westwood ◽  
Xueshu Yu ◽  
Chester L. Foy ◽  
Carole L. Cramer

Orobanche spp. are angiosperms that live parasitically on the roots of other plants, and are capable of significantly reducing the yield and quality of their crop hosts. We have demonstrated that parasitization by Orobanche induces expression of hmg2, a defense-related isogene of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) in tobacco. Transgenic tobacco plants expressing a construct containing 2.3 kb of the tomato hmg2 gene promoter fused to the β-glucuronidase (GUS) reporter gene were parasitized by O. aegyptiaca. Expression of the hmg2:GUS construct was detected within 1 day following penetration of the host root by the O. aegyptiaca radicle and was localized to the region immediately around the site of parasite invasion. This expression continued and intensified over the course of O. aegyptiaca development. In addition, the hmg2:GUS expression was induced by secondary parasitization, where secondary roots of O. aegyptiaca contacted the host root at a distance from the primary attachment site. This GUS expression was specific to plants containing the hmg2:GUS construct, and was not observed in control plants transformed with a construct of the cauliflower mosaic virus 35S promoter fused to the GUS gene. These results indicate that Orobanche parasitization initiates rapid and sustained induction of a defense-related gene in the host root.


Author(s):  
Qingchun Zhao ◽  
Zhenzhen Luo ◽  
Jiadong Chen ◽  
Hongfang Jia ◽  
Penghui Ai ◽  
...  

AbstractPhosphorus (P) deficiency is one of the major nutrient stresses restricting plant growth. The uptake of P by plants from soil is mainly mediated by the phosphate (Pi) transporters belonging to the PHT1 family. Multiple PHT1 genes from diverse plant species have been shown to be strongly up-regulated upon Pi starvation, however, the underlying mechanisms for the Pi-starvation-induced (PSI) up-regulation have not been well deciphered for most Pi transporter genes. Here, we reported a detailed dissection of the promoter activity of a PSI rice Pi transporter gene OsPT6, using the β-glucuronidase (GUS) reporter gene. OsPT6 promoter could drive GUS expression strongly in both roots and blades of rice plants grown under low P, but not high P. Cis-acting element analysis identified one copy of the P1BS motif and two copies of the W-box motif in OsPT6 promoter. Targeted deletion of the P1BS motif caused almost complete abolition of GUS induction in response to Pi starvation, irrespective of the presence or absence of the W-box motif, Four repeats of the P1BS motif fused to the CaMV35S minimal promoter was sufficient to induce GUS expression responsive to Pi starvation. Targeted deletion of the upstream W-box motif (W1) did not affect the GUS expression activity compared with the full-length OsPT6 promoter, while targeted deletion of the downstream W-box motif (W2) or both of the W-box motifs remarkably reduced the GUS induction rate upon Pi starvation. Our results proposed that the PSI response of OsPT6 was positively regulated by at least two elements, the sole P1BS and the downstream W-box, in its promoter, and the W-box-mediated up-regulation of OsPT6 might be highly dependent on the P1BS motif.


2010 ◽  
Vol 23 (2) ◽  
pp. 176-186 ◽  
Author(s):  
Miin-Huey Lee ◽  
Chiu-Min Chiu ◽  
Tatiana Roubtsova ◽  
Chien-Ming Chou ◽  
Richard M. Bostock

A 4.5-kb genomic DNA containing a Monilinia fructicola cutinase gene, MfCUT1, and its flanking regions were isolated and characterized. Sequence analysis revealed that the genomic MfCUT1 carries a 63-bp intron and a promoter region with several transcription factor binding sites that may confer redox regulation of MfCUT1 expression. Redox regulation is indicated by the effect of antioxidants, shown previously to inhibit MfCUT1 gene expression in cutin-induced cultures, and in the present study, where H2O2 enhanced MfCUT1 gene expression. A β-glucuronidase (GUS) reporter gene (gusA) was fused to MfCUT1 under the control of the MfCUT1 promoter, and this construct was then used to generate an MfCUT1-GUS strain by Agrobacterium spp.-mediated transformation. The appearance of GUS activity in response to cutin and suppression of GUS activity by glucose in cutinase-inducing medium verified that the MfCUT1-GUS fusion protein was expressed correctly under the control of the MfCUT1 promoter. MfCUT1-GUS expression was detected following inoculation of peach and apple fruit, peach flower petals, and onion epidermis, and during brown rot symptom development on nectarine fruit at a relatively late stage of infection (24 h postinoculation). However, semiquantitative reverse-transcriptase polymerase chain reaction provided sensitive detection of MfCUT1 expression within 5 h of inoculation in both almond and peach petals. MfCUT1-GUS transformants expressed MfCUT1 transcripts at twice the level as the wild type and caused more severe symptoms on Prunus flower petals, consistent with MfCUT1 contributing to the virulence of M. fructicola.


2002 ◽  
Vol 368 (3) ◽  
pp. 753-760 ◽  
Author(s):  
Alexandre GARIN ◽  
Philippe PELLET ◽  
Philippe DETERRE ◽  
Patrice DEBRÉ ◽  
Christophe COMBADIÈRE

We have previously shown that reduced expression of the fractalkine receptor, CX3CR1, is correlated with rapid HIV disease progression and with reduced susceptibility to acute coronary events. In order to elucidate the mechanisms underlying transcriptional regulation of CX3CR1 expression, we structurally and functionally characterized the CX3CR1 gene. It consists of four exons and three introns spanning over 18kb. Three transcripts are produced by splicing the three untranslated exons with exon 4, which contains the complete open reading frame. The transcript predominantly found in leucocytes corresponds to the splicing of exon 2 with exon 4. Transcripts corresponding to splicing of exons 1 and 4 are less abundant in leucocytes and splicing of exons 3 and 4 are rare longer transcripts. A constitutive promoter activity was found in the regions extending upstream from untranslated exons 1 and 2. Interestingly, exons 1 and 2 enhanced the activity of their respective promoters in a cell-specific manner. These data show that the CX3CR1 gene is controlled by three distinct promoter regions, which are regulated by their respective untranslated exons and that lead to the transcription of three mature messengers. This highly complex regulation may allow versatile and precise expression of CX3CR1 in various cell types.


2020 ◽  
Vol 21 (6) ◽  
pp. 1909
Author(s):  
Dandan Li ◽  
Rucong Xu ◽  
Dong Lv ◽  
Chunlong Zhang ◽  
Hong Yang ◽  
...  

The regulatory mechanisms of pollen development have potential value for applications in agriculture, such as better understanding plant reproductive regularity. Pollen-specific promoters are of vital importance for the ectopic expression of functional genes associated with pollen development in plants. However, there is a limited number of successful applications using pollen-specific promoters in genetic engineering for crop breeding and hybrid generation. Our previous work led to the identification and isolation of the OsSUT3 promoter from rice. In this study, to analyze the effects of different putative regulatory motifs in the OsSUT3 promoter, a series of promoter deletions were fused to a GUS reporter gene and then stably introduced into rice and Arabidopsis. Histochemical GUS analysis of transgenic plants revealed that p385 (from −385 to −1) specifically mediated maximal GUS expression in pollen tissues. The S region (from −385 to −203) was the key region for controlling the pollen-specific expression of a downstream gene. The E1 (−967 to −606), E2 (−202 to −120), and E3 (−119 to −1) regions enhanced ectopic promoter activity to different degrees. Moreover, the p385 promoter could alter the expression pattern of the 35S promoter and improve its activity when they were fused together. In summary, the p385 promoter, a short and high-activity promoter, can function to drive pollen-specific expression of transgenes in monocotyledon and dicotyledon transformation experiments.


2017 ◽  
Vol 16 (17) ◽  
pp. 945-952
Author(s):  
Mubeen Hira ◽  
Bashir Aftab ◽  
Ameen Ayesha ◽  
Masood Ammara ◽  
Raza Shahid

Sign in / Sign up

Export Citation Format

Share Document