Cotton Bsr-k1 modulates lignin deposition participating in plant resistance against Verticillium dahliae and Fusarium oxysporum

Author(s):  
Yue Li ◽  
Yaojun Zhou ◽  
Peihong Dai ◽  
Yanping Ren ◽  
Qian Wang ◽  
...  
2021 ◽  
Vol 7 (5) ◽  
pp. 344
Author(s):  
Javier Veloso ◽  
José Díaz

The non-pathogenic Fusarium oxysporum Fo47 is able to protect Capsicum annuum (pepper) but not in Solanum lycopersicum (tomato) against the pathogen Verticillium dahliae. Transcriptomics of the plant during the interaction with Fo47 shows the induction of distinct set of genes in pepper and tomato. The number of differentially expressed (DE) genes in pepper (231 DE genes) is greater than the number of DE genes in tomato (39 DE genes) at 2 days after the treatment with Fo47. Ethylene related genes were present among the DE genes in both plants, and the up-regulation of ethylene biosynthetic genes was observed to be triggered during the interaction of both plants with Fo47. The treatment with MCP (1-Methylcyclopropene, an ethylene-competitive inhibitor) reduced the Fo47 protection in pepper against Verticillium dahliae. Intriguingly, Fo47 was able to protect the ethylene-insensitive tomato mutant Never-ripe (Nr) against Verticillium dahliae, but not the tomato wilt type cv Pearson. Overall, ethylene is shown to be an important player in the response to Fo47, but its role depends on the host species.


2005 ◽  
Vol 83 (2) ◽  
pp. 73-87 ◽  
Author(s):  
J. Caron ◽  
L. Laverdière ◽  
P.O. Thibodeau ◽  
R.R. Bélanger

Le potentiel antagoniste du biofongicide à base de Trichoderma harzianum MAUL-20, isolé au Québec, a été testé contre cinq agents telluriques phytopathogènes(Fusarium oxysporum f. sp. radicis-lycopersici (FORL), Pythium ultimum, Rhizoctonia solani, Sclerotinia sclerotiorum et Verticillium dahliae) du concombre et de la tomate de serre. Le biofongicide a démontré une efficacité contre P. ultimum et R. solani chez le concombre et la tomate et contre FORL chez la tomate. De plus, T. harzianum MAUL-20 a eu un effet stimulant sur le développement des plants de concombre lorsque cultivés, sans agents pathogènes, dans un substrat organique alimenté du biofongicide. L'efficacité de T. harzianum MAUL-20 a été comparée à celle du biofongicide américain Rootshield™ (Trichoderma harzianum KRL-AG2) et le premier a démontré une activité antagoniste égale ou supérieure à celle de Rootshield™.


Plant Disease ◽  
2020 ◽  
Author(s):  
Tanya Wagner ◽  
Aixing Gu ◽  
Sara E. Duke ◽  
Alois A. Bell ◽  
Clint Magill ◽  
...  

Cotton production in Xinjiang, the largest cotton producing area in China, has an increasingly serious disease threat from Verticillium dahliae. Eighty-five V. dahliae isolates were obtained from wilted cotton plants collected from 8 counties in Xinjiang. The isolates were assessed for genotypic diversity by DNA sequence analysis and PCR molecular genotyping with specific markers for race 1, race 2, defoliating (D) pathotype, non-defoliating (ND) pathotype, and mating type idiomorph Mat1-2. Isolates belonged to lineages 1A or 2B with 3 sub-genotypes found in each lineage. All isolates tested positive for race 2 and Mat1-2 markers. All isolates in lineage 2B tested positive for the ND pathotype marker, but only isolates in the major sub-genotype in lineage 1A tested positive for the D pathotype marker. Pathogenicity assays on Gossypium hirsutum ‘Acala 44’ demonstrated no significant difference among sub-genotypes within each lineage. Isolates in lineage 1A caused greater shoot weight reductions, % leaf drop, and % diseased leaves than isolates in lineage 2B. One isolate in each lineage for 1A and 2B was avirulent. Isolates in lineage 1A caused greater than 50% leaf drop and a 17 gram shoot weight reduction compared to a 9% leaf drop and a 6 gram shoot weight reduction by isolates in lineage 2B. Overall, 42% of the V. dahliae isolates from Xinjiang were D pathotype, but the percentage varied widely among locations. Two plants had both pathotypes. Nineteen isolates of Fusarium oxysporum f. sp. vasinfectum VCG0114 also were recovered from wilted plants in Xinjiang. Two plants had both Verticillium and Fusarium wilt pathogens. Both pathogens should be considered when using or developing wilt resistant/tolerant materials for Xinjiang.


2021 ◽  
Author(s):  
Zhizhong Gong ◽  
Junsheng Qi ◽  
Aifang Ma ◽  
Dingpeng Zhang ◽  
Guangxing Wang ◽  
...  

Verticillium wilt is a severe plant disease, increasing the plant resistance to this disease is a critical challenge worldwide. Here, we report that the Verticillium dahliae (V. dahliae)-secreted Aspf2-like protein VDAL causes leaf wilting when applied to cotton leaves in vitro, but enhances the resistance to V. dahliae when overexpressed in Arabidopsis or cotton. VDAL interacts with Arabidopsis E3 ligases PUB25 and PUB26 (PUBs) and is ubiquitinated by PUBs in vitro. However, VDAL is not degraded by PUBs in planta. Besides, the pub25 pub26 shows higher resistance to V. dahliae than the wild type. PUBs interact with the transcription factor MYB6 in a yeast two-hybrid screen. MYB6 promotes plant resistance to Verticillium wilt while PUBs ubiquitinate MYB6 and mediate its degradation. VDAL competes with MYB6 for binding to PUBs, and the role of VDAL in increasing wilt disease depends on MYB6. These results suggest that plants evolute a strategy to utilize the invaded effector protein VDAL to resist the V. dahliae infection without causing a hypersensitive response. This study provides the molecular mechanism for plants increasing disease resistance when overexpressing some effector proteins, and may promote searching for more genes from pathogenic fungi or bacteria to engineer plant disease resistance.


2016 ◽  
Vol 79 ◽  
pp. 70-79 ◽  
Author(s):  
Emmanouil A. Markakis ◽  
Michalis S. Fountoulakis ◽  
Georgios Ch. Daskalakis ◽  
Michalis Kokkinis ◽  
Eleftherios K. Ligoxigakis

Sign in / Sign up

Export Citation Format

Share Document