A Simple Method to Enhance Gain and Isolation of MIMO Antennas Simultaneously Based on Metamaterial Structures for Millimeter-Wave Applications

Author(s):  
Farzad Khajeh-Khalili ◽  
M. Amin Honarvar ◽  
Mohammad Naser-Moghadasi ◽  
Mehdi Dolatshahi
Author(s):  
Mohamed Ismail Ahmed ◽  
Hala Mohammed Elsayed Mohammed Marzouk ◽  
Abdelhamid A. Shaalan

Millimeter-wave antennas are the trend nowadays because of the necessity of higher data rates. Designing a supplementary efficient antenna capable of dealing with dual bands has several challenges. This chapter reports the problematic approaches introduced in the field of a millimeter wave design. Prevailing investigations in millimeter-waves and MIMO antennas have a tendency to emphasize discovering how to increase the data rate without the need of increasing the bandwidth and what type of antenna preferred in the 5G band. However, there is a little indication that researchers have come close to the issue of antenna integration in the mobile handset with the intent of adding multiple antennas with multi-band capability in a small space. Accordingly, the target of this chapter is to offer a summary of how the small-dimensional MIMO antennas with band duality for 5G mobile communications can be intended, designed, sustained and fabricated.


1974 ◽  
Vol 29 (4) ◽  
pp. 633-641 ◽  
Author(s):  
Manfred Winnewisser ◽  
Brenda P. Winnewisser

An efficient system for preliminary data reduction is described which completes a recently developed data acquisition and reduction system for the measurement of millimeter wave absorption lines with the help of a dedicated computer. A simple method of automatically determining the absorption line centers is given. Rotational transitions of DCNO, measured with the above system, are reported for the ground state and the first excited state of each of the two bending modes ν4 and ν5. The rotational and rotation-vibration constants obtained for these states are B0 = 10,292.48340 (31) MHz, D0 = 3.5418 (10) kHz,Bν4 = 10,306.00780 (45) MHz, Dν4 = 3.6409 (22) kHz,Bν5 = 10,338.65942 (32) MHz, Dν5 = 3.6208 (16) kHz.The l-type doubling constants q.t0) and qt(1) agree with the values obtained previously from direct l-type doubling transitions.


2021 ◽  
pp. 93-108
Author(s):  
Shiban Kishen Koul ◽  
Zamir Wani

Author(s):  
Xinli Xiong ◽  
Kuan Wang ◽  
Jianbin Chen ◽  
Zhoubing Xiong ◽  
Fenghua Liang ◽  
...  

Author(s):  
K.-H. Herrmann ◽  
E. Reuber ◽  
P. Schiske

Aposteriori deblurring of high resolution electron micrographs of weak phase objects can be performed by holographic filters [1,2] which are arranged in the Fourier domain of a light-optical reconstruction set-up. According to the diffraction efficiency and the lateral position of the grating structure, the filters permit adjustment of the amplitudes and phases of the spatial frequencies in the image which is obtained in the first diffraction order.In the case of bright field imaging with axial illumination, the Contrast Transfer Functions (CTF) are oscillating, but real. For different imageforming conditions and several signal-to-noise ratios an extensive set of Wiener-filters should be available. A simple method of producing such filters by only photographic and mechanical means will be described here.A transparent master grating with 6.25 lines/mm and 160 mm diameter was produced by a high precision computer plotter. It is photographed through a rotating mask, plotted by a standard plotter.


Sign in / Sign up

Export Citation Format

Share Document