The Millimeter Wave Spectrum of DCNO: An Example of Current Measurements in the Frequency Range from 60 to 350 GHz

1974 ◽  
Vol 29 (4) ◽  
pp. 633-641 ◽  
Author(s):  
Manfred Winnewisser ◽  
Brenda P. Winnewisser

An efficient system for preliminary data reduction is described which completes a recently developed data acquisition and reduction system for the measurement of millimeter wave absorption lines with the help of a dedicated computer. A simple method of automatically determining the absorption line centers is given. Rotational transitions of DCNO, measured with the above system, are reported for the ground state and the first excited state of each of the two bending modes ν4 and ν5. The rotational and rotation-vibration constants obtained for these states are B0 = 10,292.48340 (31) MHz, D0 = 3.5418 (10) kHz,Bν4 = 10,306.00780 (45) MHz, Dν4 = 3.6409 (22) kHz,Bν5 = 10,338.65942 (32) MHz, Dν5 = 3.6208 (16) kHz.The l-type doubling constants q.t0) and qt(1) agree with the values obtained previously from direct l-type doubling transitions.

2018 ◽  
Vol 619 ◽  
pp. A92 ◽  
Author(s):  
C. Bermúdez ◽  
B. Tercero ◽  
R. A. Motiyenko ◽  
L. Margulès ◽  
J. Cernicharo ◽  
...  

Context. The analysis of isomeric species of a compound observed in the interstellar medium (ISM) is a useful tool to understand the chemistry of complex organic molecules. It could, likewise, assist in the detection of new species. Aims. Our goal consists in analyzing one of the two most stable species of the C3H4O family, methyl ketene, whose actual rotational parameters are not precise enough to allow its detection in the ISM. The obtained parameters will be used to search for it in the high-mass star-forming regions Orion KL and Sagittarius B2, as well as in the cold dark clouds TMC-1 in the Taurus Molecular Cloud and Barnard 1 (B1–b). Methods. A millimeter-wave room-temperature rotational spectrum of methyl ketene was recorded from 50 to 330 GHz. The internal rotation analysis of its ground state and first torsional excited state was performed with the rho-axis method employing the RAM36 program. Results. More than 3000 transitions of the rotational spectrum of the ground state (Kamax = 18) and first torsional excited state (Kamax = 13) of methyl ketene were fitted using a Hamiltonian that contains 41 parameters with a root mean square of 44 kHz. Column density limits were calculated but no lines were detected in the ISM belonging to methyl ketene.


2019 ◽  
Vol 21 (39) ◽  
pp. 21960-21965 ◽  
Author(s):  
Mark A. Burton ◽  
Benjamin T. Russ ◽  
Matthew P. Bucchino ◽  
Phillip M. Sheridan ◽  
Lucy M. Ziurys

Measurement of the millimeter-wave spectrum of the KO radical, using direct absorption methods, suggests that the ground electronic state is X2Πi with a close-lying excited state approximately 120 cm−1 higher in energy.


1971 ◽  
Vol 26 (1) ◽  
pp. 128-131 ◽  
Author(s):  
Manfred Winnewisser ◽  
Brenda P. Winnewisser

Abstract A newly designed millimeter-wave spectrometer has been employed for precise measurements of the millimeter-wave rotational spectrum of HCNO. Absorptions in several excited vibrational states as well as the ground state could be measured. The present paper presents the observed frequen­ cies and molecular constants obtained for the ground state and the first excited state of v4 and of v5, the vibrational bending modes


2017 ◽  
Vol 474 (16) ◽  
pp. 2713-2731 ◽  
Author(s):  
Athinoula L. Petrou ◽  
Athina Terzidaki

From kinetic data (k, T) we calculated the thermodynamic parameters for various processes (nucleation, elongation, fibrillization, etc.) of proteinaceous diseases that are related to the β-amyloid protein (Alzheimer's), to tau protein (Alzheimer's, Pick's), to α-synuclein (Parkinson's), prion, amylin (type II diabetes), and to α-crystallin (cataract). Our calculations led to ΔG≠ values that vary in the range 92.8–127 kJ mol−1 at 310 K. A value of ∼10–30 kJ mol−1 is the activation energy for the diffusion of reactants, depending on the reaction and the medium. The energy needed for the excitation of O2 from the ground to the first excited state (1Δg, singlet oxygen) is equal to 92 kJ mol−1. So, the ΔG≠ is equal to the energy needed for the excitation of ground state oxygen to the singlet oxygen (1Δg first excited) state. The similarity of the ΔG≠ values is an indication that a common mechanism in the above disorders may be taking place. We attribute this common mechanism to the (same) role of the oxidative stress and specifically of singlet oxygen, (1Δg), to the above-mentioned processes: excitation of ground state oxygen to the singlet oxygen, 1Δg, state (92 kJ mol−1), and reaction of the empty π* orbital with high electron density regions of biomolecules (∼10–30 kJ mol−1 for their diffusion). The ΔG≠ for cases of heat-induced cell killing (cancer) lie also in the above range at 310 K. The present paper is a review and meta-analysis of literature data referring to neurodegenerative and other disorders.


1983 ◽  
Vol 38 (4) ◽  
pp. 447-451 ◽  
Author(s):  
J. Demaison ◽  
D. Boucher ◽  
J. Burie ◽  
A. Dubrulle

The rotational spectrum of ethyl acetylene has been investigated between 70 and 320 GHz. A Coriolis interaction has been found between the first excited state of the methyl torsion and the C - C = C in plane deformation. Splittings of transitions in the first excited torsional state show that the barrier hindering internal rotation of the methyl group amounts to 3271 cal/mole.


1990 ◽  
Vol 45 (9-10) ◽  
pp. 1165-1168 ◽  
Author(s):  
R. Spiehl ◽  
A. Guarnieri

Abstract The rotational spectra of CHF235Cl and CHF237Cl (CFC22) in the vibrational ground state between 42 and 214 GHz are reported. A centrifugal distortion analysis up to the sixth order is carried out.


1964 ◽  
Vol 42 (6) ◽  
pp. 1311-1323 ◽  
Author(s):  
M. A. Eswaran ◽  
C. Broude

Lifetime measurements have been made by the Doppler-shift attenuation method for the 1.98-, 3.63-, 3.92-, and 4.45-Mev states in O18 and the 1.28-, 3.34-, and 4.47-Mev states in Ne22, excited by the reactions Li7(C12, pγ)O18 and Li7(O16, pγ)Ne22. Branching ratios have also been measured. The results are tabulated.[Formula: see text]The decay of the 3.92-Mev state in O18 is 93.5% to the 1.98-Mev state and 6.5% to the ground state and of the 4.45-Mev state 74% to the 3.63-Mev state, 26% to the 1.98-Mev state, and less than 2% to the ground state. In Ne22, the ground-state transition from the 4.47-Mev state is less than 2% of the decay to the first excited state.


Sign in / Sign up

Export Citation Format

Share Document