General Holographic Superconductor Models in AdS BTZ Black Hole

2015 ◽  
Vol 54 (9) ◽  
pp. 3424-3429 ◽  
Author(s):  
Yan Peng ◽  
Guohua Liu
2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Jan Albert

Abstract We study the self-gravitating Abrikosov vortex in curved space with and with-out a (negative) cosmological constant, considering both singular and non-singular solutions with an eye to hairy black holes. In the asymptotically flat case, we find that non-singular vortices round off the singularity of the point particle’s metric in 3 dimensions, whereas singular solutions consist of vortices holding a conical singularity at their core. There are no black hole vortex solutions. In the asymptotically AdS case, in addition to these solutions there exist singular solutions containing a BTZ black hole, but they are always hairless. So we find that in contrast with 4-dimensional ’t Hooft-Polyakov monopoles, which can be regarded as their higher-dimensional analogues, Abrikosov vortices cannot hold a black hole at their core. We also describe the implications of these results in the context of AdS/CFT and propose an interpretation for their CFT dual along the lines of the holographic superconductor.


2009 ◽  
Vol 60 (2) ◽  
pp. 169-173 ◽  
Author(s):  
Sayan K. Chakrabarti ◽  
Pulak Ranjan Giri ◽  
Kumar S. Gupta

2011 ◽  
Vol 2011 (8) ◽  
Author(s):  
Justin R. David ◽  
Abhishake Sadhukhan
Keyword(s):  

2016 ◽  
Vol 26 (06) ◽  
pp. 1750046
Author(s):  
Yan Peng ◽  
Tao Chen ◽  
Guohua Liu ◽  
Pengwei Ma

We generalize the holographic superconductor model with dark matter sector by including the Stückelberg mechanism in the four-dimensional anti-de Sitter (AdS) black hole background away from the probe limit. We study effects of the dark matter sector on the [Formula: see text]-wave scalar condensation and find that the dark matter sector affects the critical phase transition temperature and also the order of phase transitions. At last, we conclude that the dark matter sector brings richer physics in this general metal/superconductor system.


2015 ◽  
Vol 24 (05) ◽  
pp. 1550034 ◽  
Author(s):  
Piyali Bhar ◽  
Ayan Banerjee

In this paper, we construct thin-shell wormholes in (2 + 1)-dimensions from noncommutative BTZ black hole by applying the cut-and-paste procedure implemented by Visser. We calculate the surface stresses localized at the wormhole throat by using the Darmois–Israel formalism and we find that the wormholes are supported by matter violating the energy conditions. In order to explore the dynamical analysis of the wormhole throat, we consider that the matter at the shell is supported by dark energy equation of state (EoS) p = ωρ with ω < 0. The stability analysis is carried out of these wormholes to linearized spherically symmetric perturbations around static solutions. Preserving the symmetry we also consider the linearized radial perturbation around static solution to investigate the stability of wormholes which was explored by the parameter β (speed of sound).


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yun Soo Myung

We investigate thermodynamics of the BTZ black hole in new massive gravity explicitly. Form2l2>1/2withm2being the mass parameter of fourth-order terms andl2AdS3curvature radius, the Hawking-Page phase transition occurs between the BTZ black hole and AdS (thermal) soliton. Form2l2<1/2, however, this transition unlikely occurs but a phase transition between the BTZ black hole and the massless BTZ black hole is possible to occur. We may call the latter the inverse Hawking-Page phase transition and this transition is favored in the new massive gravity.


Sign in / Sign up

Export Citation Format

Share Document