scholarly journals Holographic superconductor developed in BTZ black hole background with backreactions

2011 ◽  
Vol 702 (1) ◽  
pp. 94-99 ◽  
Author(s):  
Yunqi Liu ◽  
Qiyuan Pan ◽  
Bin Wang
2009 ◽  
Vol 60 (2) ◽  
pp. 169-173 ◽  
Author(s):  
Sayan K. Chakrabarti ◽  
Pulak Ranjan Giri ◽  
Kumar S. Gupta

2016 ◽  
Vol 26 (06) ◽  
pp. 1750046
Author(s):  
Yan Peng ◽  
Tao Chen ◽  
Guohua Liu ◽  
Pengwei Ma

We generalize the holographic superconductor model with dark matter sector by including the Stückelberg mechanism in the four-dimensional anti-de Sitter (AdS) black hole background away from the probe limit. We study effects of the dark matter sector on the [Formula: see text]-wave scalar condensation and find that the dark matter sector affects the critical phase transition temperature and also the order of phase transitions. At last, we conclude that the dark matter sector brings richer physics in this general metal/superconductor system.


2015 ◽  
Vol 30 (13) ◽  
pp. 1550069
Author(s):  
Yan Peng ◽  
Guohua Liu

We study general models for holographic superconductors with higher correction terms of the scalar field in the four-dimensional AdS black hole background including the matter fields' backreaction on the metric. We explore the effects of the model parameters on the scalar condensation and find that different values of model parameters can determine the order of phase transitions. Moreover, we find that the higher correction terms provide richer physics in the phase transition diagram.


2016 ◽  
Vol 2016 (7) ◽  
Author(s):  
S. A. Hosseini Mansoori ◽  
B. Mirza ◽  
A. Mokhtari ◽  
F. Lalehgani Dezaki ◽  
Z. Sherkatghanad

2017 ◽  
Vol 27 (01) ◽  
pp. 1750175 ◽  
Author(s):  
Z. Sherkatghanad ◽  
B. Mirza ◽  
F. Lalehgani Dezaki

We analytically describe the properties of the s-wave holographic superconductor with the exponential nonlinear electrodynamics in the Lifshitz black hole background in four-dimensions. Employing an assumption the scalar and gauge fields backreact on the background geometry, we calculate the critical temperature as well as the condensation operator. Based on Sturm–Liouville method, we show that the critical temperature decreases with increasing exponential nonlinear electrodynamics and Lifshitz dynamical exponent, [Formula: see text], indicating that condensation becomes difficult. Also we find that the effects of backreaction has a more important role on the critical temperature and condensation operator in small values of Lifshitz dynamical exponent, while [Formula: see text] is around one. In addition, the properties of the upper critical magnetic field in Lifshitz black hole background using Sturm–Liouville approach is investigated to describe the phase diagram of the corresponding holographic superconductor in the probe limit. We observe that the critical magnetic field decreases with increasing Lifshitz dynamical exponent, [Formula: see text], and it goes to zero at critical temperature, independent of the Lifshitz dynamical exponent, [Formula: see text].


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Roberto Auzzi ◽  
Stefano Baiguera ◽  
Sara Bonansea ◽  
Giuseppe Nardelli ◽  
Kristian Toccacelo

Abstract We investigate the complexity=volume proposal in the case of Janus AdS3 geometries, both at zero and finite temperature. The leading contribution coming from the Janus interface is a logarithmic divergence, whose coefficient is a function of the dilaton excursion. In the presence of the defect, complexity is no longer topological and becomes temperature-dependent. We also study the time evolution of the extremal volume for the time-dependent Janus BTZ black hole. This background is not dual to an interface but to a pair of entangled CFTs with different values of the couplings. At late times, when the equilibrium is restored, the couplings of the CFTs do not influence the complexity rate. On the contrary, the complexity rate for the out-of-equilibrium system is always smaller compared to the pure BTZ black hole background.


2011 ◽  
Vol 703 (1) ◽  
pp. 14-19 ◽  
Author(s):  
J. Sadeghi ◽  
H. Farahani ◽  
B. Pourhassan ◽  
S.M. Noorbakhsh

Sign in / Sign up

Export Citation Format

Share Document