Total Conserved Charges of Kerr Spacetime with One Rotation Parameter in 5-Dimensions Using Poincaré Gauge Theory

2015 ◽  
Vol 54 (10) ◽  
pp. 3490-3499
Author(s):  
Gamal G. L. Nashed
Author(s):  
S. Kumar ◽  
B. K. Kureel ◽  
R. P. Malik

We discuss the nilpotent Becchi–Rouet–Stora–Tyutin (BRST), anti-BRST and (anti-)co-BRST symmetry transformations and derive their corresponding conserved charges in the case of a two (1[Formula: see text]+[Formula: see text]1)-dimensional (2D) self-interacting non-Abelian gauge theory (without any interaction with matter fields). We point out a set of novel features that emerge out in the BRST and co-BRST analysis of the above 2D gauge theory. The algebraic structures of the symmetry operators (and corresponding conserved charges) and their relationship with the cohomological operators of differential geometry are established too. To be more precise, we demonstrate the existence of a single Lagrangian density that respects the continuous symmetries which obey proper algebraic structure of the cohomological operators of differential geometry. In the literature, such observations have been made for the coupled (but equivalent) Lagrangian densities of the 4D non-Abelian gauge theory. We lay emphasis on the existence and properties of the Curci–Ferrari (CF)-type restrictions in the context of (anti-)BRST and (anti-)co-BRST symmetry transformations and pinpoint their key differences and similarities. All the observations, connected with the (anti-)co-BRST symmetries, are completely novel.


2018 ◽  
Vol 2018 ◽  
pp. 1-23 ◽  
Author(s):  
S. Kumar ◽  
B. Chauhan ◽  
R. P. Malik

We exploit the theoretical strength of augmented version of superfield approach (AVSA) to Becchi-Rouet-Stora-Tyutin (BRST) formalism to express the nilpotency and absolute anticommutativity properties of the (anti-)BRST and (anti-)co-BRST conserved charges for the two (1+1)-dimensional (2D) non-Abelian 1-form gauge theory (without any interaction with matter fields) in the language of superspace variables, their derivatives, and suitable superfields. In the proof of absolute anticommutativity property, we invoke the strength of Curci-Ferrari (CF) condition for the (anti-)BRST charges. No such outside condition/restriction is required in the proof of absolute anticommutativity of the (anti-)co-BRST conserved charges. The latter observation (as well as other observations) connected with (anti-)co-BRST symmetries and corresponding conserved charges are novel results of our present investigation. We also discuss the (anti-)BRST and (anti-)co-BRST symmetry invariance of the appropriate Lagrangian densities within the framework of AVSA. In addition, we dwell a bit on the derivation of the above fermionic (nilpotent) symmetries by applying the AVSA to BRST formalism, where only the (anti)chiral superfields are used.


2020 ◽  
Vol 2020 ◽  
pp. 1-38 ◽  
Author(s):  
B. Chauhan ◽  
S. Kumar ◽  
A. Tripathi ◽  
R. P. Malik

Within the framework of Becchi-Rouet-Stora-Tyutin (BRST) approach, we discuss mainly the fermionic (i.e., off-shell nilpotent) (anti-)BRST, (anti-)co-BRST, and some discrete dual symmetries of the appropriate Lagrangian densities for a two (1+1)-dimensional (2D) modified Proca (i.e., a massive Abelian 1-form) theory without any interaction with matter fields. One of the novel observations of our present investigation is the existence of some kinds of restrictions in the case of our present Stückelberg-modified version of the 2D Proca theory which is not like the standard Curci-Ferrari (CF) condition of a non-Abelian 1-form gauge theory. Some kinds of similarities and a few differences between them have been pointed out in our present investigation. To establish the sanctity of the above off-shell nilpotent (anti-)BRST and (anti-)co-BRST symmetries, we derive them by using our newly proposed (anti-)chiral superfield formalism where a few specific and appropriate sets of invariant quantities play a decisive role. We express the (anti-)BRST and (anti-)co-BRST conserved charges in terms of the superfields that are obtained after the applications of (anti-)BRST and (anti-)co-BRST invariant restrictions and prove their off-shell nilpotency and absolute anticommutativity properties, too. Finally, we make some comments on (i) the novelty of our restrictions/obstructions and (ii) the physics behind the negative kinetic term associated with the pseudoscalar field of our present theory.


2018 ◽  
Vol 15 (03) ◽  
pp. 1850047 ◽  
Author(s):  
Razieh Gharechahi ◽  
Mohammad Nouri-Zonoz ◽  
Alireza Tavanfar

One of the important quantities in cosmology and astrophysics is the 3-velocity of an object. Specifically, when the gravitational fields are strong, one should require the employment of general relativity both in its definition and measurement. Looking into the literature for GR-based definitions of 3-velocity, one usually finds different ad hoc definitions applied according to the case under consideration. Here, we introduce and analyze systematically the two principal definitions of 3-velocity assigned to a test particle following the timelike trajectories in stationary spacetimes. These definitions are based on the [Formula: see text] (threading) and [Formula: see text] (slicing) spacetime decomposition formalisms and defined relative to two different sets of observers. After showing that Synge’s definition of spatial distance and 3-velocity is equivalent to those defined in the [Formula: see text] (threading) formalism, we exemplify the differences between these two definitions by calculating them for particles in circular orbits in axially symmetric stationary spacetimes. Illustrating its geometric nature, the relative linear velocity between the corresponding observers is obtained in terms of the spacetime metric components. Circular particle orbits in the Kerr spacetime, as the prototype and the most well known of stationary spacetimes, are examined with respect to these definitions to highlight their observer-dependent nature. We also examine the Kerr-NUT spacetime in which the NUT parameter, contributing to the off-diagonal terms in the metric, is mainly interpreted not as a rotation parameter but as a gravitomagnetic monopole charge. Finally, in a specific astrophysical setup which includes rotating black holes, it is shown how the local velocity of an orbiting star could be related to its spectral line shifts measured by distant observers.


2002 ◽  
Vol 17 (03) ◽  
pp. 185-196 ◽  
Author(s):  
R. P. MALIK

In the framework of superfield formalism, we demonstrate the existence of a new local, covariant, continuous and nilpotent (dual-BRST) symmetry for the BRST invariant Lagrangian density of a self-interacting two (1+1)-dimensional (2D) non-Abelian gauge theory (having no interaction with matter fields). The local and nilpotent Noether conserved charges corresponding to the above continuous symmetries find their geometrical interpretation as the translation generators along the odd (Grassmannian) directions of the four (2+2)-dimensional compact supermanifold.


2013 ◽  
Vol 2013 ◽  
pp. 1-16
Author(s):  
Gamal G. L. Nashed

The total conserved charges of several tetrad spacetimes, generating the Kerr-Newman (KN) metric, are calculated using the approach of invariant conserved currents generated by an arbitrary vector field that reproduces a diffeomorphism on the spacetime. The accompanying charges of some tetrads give the known value of energy and angular momentum, while those of other tetrads give, in addition to the unknown format charges, a divergent entity. Therefore, regularized expressions are considered also to get the commonly known form of conserved charges of KN.


Sign in / Sign up

Export Citation Format

Share Document