scholarly journals Superfield Approach to Nilpotency and Absolute Anticommutativity of Conserved Charges: 2D Non-Abelian 1-Form Gauge Theory

2018 ◽  
Vol 2018 ◽  
pp. 1-23 ◽  
Author(s):  
S. Kumar ◽  
B. Chauhan ◽  
R. P. Malik

We exploit the theoretical strength of augmented version of superfield approach (AVSA) to Becchi-Rouet-Stora-Tyutin (BRST) formalism to express the nilpotency and absolute anticommutativity properties of the (anti-)BRST and (anti-)co-BRST conserved charges for the two (1+1)-dimensional (2D) non-Abelian 1-form gauge theory (without any interaction with matter fields) in the language of superspace variables, their derivatives, and suitable superfields. In the proof of absolute anticommutativity property, we invoke the strength of Curci-Ferrari (CF) condition for the (anti-)BRST charges. No such outside condition/restriction is required in the proof of absolute anticommutativity of the (anti-)co-BRST conserved charges. The latter observation (as well as other observations) connected with (anti-)co-BRST symmetries and corresponding conserved charges are novel results of our present investigation. We also discuss the (anti-)BRST and (anti-)co-BRST symmetry invariance of the appropriate Lagrangian densities within the framework of AVSA. In addition, we dwell a bit on the derivation of the above fermionic (nilpotent) symmetries by applying the AVSA to BRST formalism, where only the (anti)chiral superfields are used.

Author(s):  
S. Kumar ◽  
B. K. Kureel ◽  
R. P. Malik

We discuss the nilpotent Becchi–Rouet–Stora–Tyutin (BRST), anti-BRST and (anti-)co-BRST symmetry transformations and derive their corresponding conserved charges in the case of a two (1[Formula: see text]+[Formula: see text]1)-dimensional (2D) self-interacting non-Abelian gauge theory (without any interaction with matter fields). We point out a set of novel features that emerge out in the BRST and co-BRST analysis of the above 2D gauge theory. The algebraic structures of the symmetry operators (and corresponding conserved charges) and their relationship with the cohomological operators of differential geometry are established too. To be more precise, we demonstrate the existence of a single Lagrangian density that respects the continuous symmetries which obey proper algebraic structure of the cohomological operators of differential geometry. In the literature, such observations have been made for the coupled (but equivalent) Lagrangian densities of the 4D non-Abelian gauge theory. We lay emphasis on the existence and properties of the Curci–Ferrari (CF)-type restrictions in the context of (anti-)BRST and (anti-)co-BRST symmetry transformations and pinpoint their key differences and similarities. All the observations, connected with the (anti-)co-BRST symmetries, are completely novel.


2020 ◽  
Vol 2020 ◽  
pp. 1-38 ◽  
Author(s):  
B. Chauhan ◽  
S. Kumar ◽  
A. Tripathi ◽  
R. P. Malik

Within the framework of Becchi-Rouet-Stora-Tyutin (BRST) approach, we discuss mainly the fermionic (i.e., off-shell nilpotent) (anti-)BRST, (anti-)co-BRST, and some discrete dual symmetries of the appropriate Lagrangian densities for a two (1+1)-dimensional (2D) modified Proca (i.e., a massive Abelian 1-form) theory without any interaction with matter fields. One of the novel observations of our present investigation is the existence of some kinds of restrictions in the case of our present Stückelberg-modified version of the 2D Proca theory which is not like the standard Curci-Ferrari (CF) condition of a non-Abelian 1-form gauge theory. Some kinds of similarities and a few differences between them have been pointed out in our present investigation. To establish the sanctity of the above off-shell nilpotent (anti-)BRST and (anti-)co-BRST symmetries, we derive them by using our newly proposed (anti-)chiral superfield formalism where a few specific and appropriate sets of invariant quantities play a decisive role. We express the (anti-)BRST and (anti-)co-BRST conserved charges in terms of the superfields that are obtained after the applications of (anti-)BRST and (anti-)co-BRST invariant restrictions and prove their off-shell nilpotency and absolute anticommutativity properties, too. Finally, we make some comments on (i) the novelty of our restrictions/obstructions and (ii) the physics behind the negative kinetic term associated with the pseudoscalar field of our present theory.


2002 ◽  
Vol 17 (03) ◽  
pp. 185-196 ◽  
Author(s):  
R. P. MALIK

In the framework of superfield formalism, we demonstrate the existence of a new local, covariant, continuous and nilpotent (dual-BRST) symmetry for the BRST invariant Lagrangian density of a self-interacting two (1+1)-dimensional (2D) non-Abelian gauge theory (having no interaction with matter fields). The local and nilpotent Noether conserved charges corresponding to the above continuous symmetries find their geometrical interpretation as the translation generators along the odd (Grassmannian) directions of the four (2+2)-dimensional compact supermanifold.


2017 ◽  
Vol 32 (22) ◽  
pp. 1750136 ◽  
Author(s):  
N. Srinivas ◽  
S. Kumar ◽  
B. K. Kureel ◽  
R. P. Malik

Within the framework of Becchi–Rouet–Stora–Tyutin (BRST) formalism, we discuss some novel features of a two (1[Formula: see text]+[Formula: see text]1)-dimensional (2D) non-Abelian 1-form gauge theory (without any interaction with matter fields). Besides the usual off-shell nilpotent and absolutely anticommutating (anti-)BRST symmetry transformations, we discuss the off-shell nilpotent and absolutely anticommutating (anti-)co-BRST symmetry transformations. Particularly, we lay emphasis on the existence of the coupled (but equivalent) Lagrangian densities of the 2D non-Abelian theory in view of the presence of (anti-)co-BRST symmetry transformations where we pin-point some novel features associated with the Curci–Ferrari (CF-)type restrictions. We demonstrate that these CF-type restrictions can be incorporated into the (anti-)co-BRST invariant Lagrangian densities through the fermionic Lagrange multipliers which carry specific ghost numbers. The modified versions of the Lagrangian densities (where we get rid of the new CF-type restrictions) respect some precise symmetries as well as a couple of symmetries with CF-type constraints. These observations are completely novel as far as the BRST formalism, with proper (anti-)co-BRST symmetries, is concerned.


2011 ◽  
Vol 26 (25) ◽  
pp. 4419-4450 ◽  
Author(s):  
S. KRISHNA ◽  
A. SHUKLA ◽  
R. P. MALIK

We apply the well-established techniques of geometrical superfield approach to Becchi–Rouet–Stora–Tyutin (BRST) formalism in the context of four (3+1)-dimensional (4D) dynamical non-Abelian 2-form gauge theory by exploiting its inherent "scalar" and "vector" gauge symmetry transformations and derive the corresponding off-shell nilpotent and absolutely anticommuting BRST and anti-BRST symmetry transformations. Our approach leads to the derivation of three (anti-)BRST invariant Curci–Ferrari (CF)-type restrictions that are found to be responsible for the absolute anticommutativity of the BRST and anti-BRST symmetry transformations. We derive the coupled Lagrangian densities that respect the (anti-)BRST symmetry transformations corresponding to the "vector" gauge transformations. We also capture the (anti-)BRST invariance of the CF-type restrictions and coupled Lagrangian densities within the framework of our superfield approach. We obtain, furthermore, the off-shell nilpotent (anti-)BRST symmetry transformations when the (anti-)BRST symmetry transformations corresponding to the "scalar" and "vector" gauge symmetries are merged together. These off-shell nilpotent "merged" (anti-)BRST symmetry transformations are, however, found to be non-anticommuting in nature.


2018 ◽  
Vol 33 (04) ◽  
pp. 1850026 ◽  
Author(s):  
B. Chauhan ◽  
S. Kumar ◽  
R. P. Malik

We derive the off-shell nilpotent (fermionic) (anti-)BRST symmetry transformations by exploiting the (anti-)chiral superfield approach (ACSA) to Becchi–Rouet–Stora–Tyutin (BRST) formalism for the interacting Abelian 1-form gauge theories where there is a coupling between the U(1) Abelian 1-form gauge field and Dirac as well as complex scalar fields. We exploit the (anti-)BRST invariant restrictions on the (anti-)chiral superfields to derive the fermionic symmetries of our present D-dimensional Abelian 1-form gauge theories. The novel observation of our present investigation is the derivation of the absolute anticommutativity of the nilpotent (anti-)BRST charges despite the fact that our ordinary D-dimensional theories are generalized onto the (D,[Formula: see text]1)-dimensional (anti-) chiral super-submanifolds (of the general (D,[Formula: see text]2)-dimensional supermanifold) where only the (anti-)chiral super expansions of the (anti-)chiral superfields have been taken into account. We also discuss the nilpotency of the (anti-)BRST charges and (anti-)BRST invariance of the Lagrangian densities of our present theories within the framework of ACSA to BRST formalism.


2005 ◽  
Vol 20 (20n21) ◽  
pp. 4899-4915 ◽  
Author(s):  
R. P. MALIK

In the framework of superfield approach to Becchi–Rouet–Stora–Tyutin (BRST) formalism, the derivation of the BRST and anti-BRST nilpotent symmetry transformations for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem. In our present investigation, the local, covariant, continuous and off-shell nilpotent (anti-)BRST symmetry transformations for the Dirac fields [Formula: see text] are derived in the framework of the augmented superfield formulation where the four (3 + 1)-dimensional (4D) interacting non-Abelian gauge theory is considered on the six (4 + 2)-dimensional supermanifold parametrized by the four even space–time coordinates xμ and a couple of odd elements (θ and [Formula: see text]) of the Grassmann algebra. The requirement of the invariance of the matter (super)currents and the horizontality condition on the (super)manifolds leads to the derivation of the nilpotent symmetries for the matter fields as well as the gauge and the (anti)ghost fields of the theory in the general scheme of augmented superfield formalism.


2020 ◽  
Vol 35 (05) ◽  
pp. 2050020
Author(s):  
Jialiang Dai

We construct the extended BRST and anti-BRST transformation by considering a shift symmetry both in Abelian and non-Abelian Chern–Simons theories coupled to scalar fields using the approach of Batalin–Vilkovisky quantization. The extended BRST invariant Lagrangian density is able to be addressed in the framework of superfield formalism with one fermionic coordinate. In the case of extended BRST–anti-BRST symmetry, it is shown that the Batalin–Vilkovisky action of the theory can be expressed in a covariant form with two fermionic coordinates in the superspace.


2017 ◽  
Vol 32 (33) ◽  
pp. 1750193 ◽  
Author(s):  
N. Srinivas ◽  
R. P. Malik

We derive the off-shell nilpotent symmetries of the two [Formula: see text]-dimensional (2D) non-Abelian 1-form gauge theory by using the theoretical techniques of the geometrical superfield approach to Becchi–Rouet–Stora–Tyutin (BRST) formalism. For this purpose, we exploit the augmented version of superfield approach (AVSA) and derive theoretically useful nilpotent (anti-)BRST, (anti-)co-BRST symmetries and Curci–Ferrari (CF)-type restrictions for the self-interacting 2D non-Abelian 1-form gauge theory (where there is no interaction with matter fields). The derivation of the (anti-)co-BRST symmetries and all possible CF-type restrictions are completely novel results within the framework of AVSA to BRST formalism where the ordinary 2D non-Abelian theory is generalized onto an appropriately chosen [Formula: see text]-dimensional supermanifold. The latter is parametrized by the superspace coordinates [Formula: see text] where [Formula: see text] (with [Formula: see text]) are the bosonic coordinates and a pair of Grassmannian variables [Formula: see text] obey the relationships: [Formula: see text], [Formula: see text]. The topological nature of our 2D theory allows the existence of a tower of CF-type restrictions.


Sign in / Sign up

Export Citation Format

Share Document