Auxiliary Conformally Invariant Higher-Spin Field in de Sitter Space

2015 ◽  
Vol 55 (3) ◽  
pp. 1315-1323
Author(s):  
M. Elmizadeh ◽  
M. R. Tanhayi
2018 ◽  
Vol 168 ◽  
pp. 01007 ◽  
Author(s):  
Yasha Neiman

This contribution is a status report on a research program aimed at obtaining quantum-gravitational physics inside a cosmological horizon through dS/CFT, i.e. through a holographic description at past/future infinity of de Sitter space. The program aims to bring together two main elements. The first is the observation by Anninos, Hartman and Strominger that Vasiliev’s higher-spin gravity provides a working model for dS/CFT in 3+1 dimensions. The second is the proposal by Parikh, Savonije and Verlinde that dS/CFT may prove more tractable if one works in so-called “elliptic” de Sitter space – a folded-in-half version of global de Sitter where antipodal points have been identified. We review some relevant progress concerning quantum field theory on elliptic de Sitter space, higher-spin gravity and its holographic duality with a free vector model. We present our reasons for optimism that the approach outlined here will lead to a full holographic description of quantum (higher-spin) gravity in the causal patch of a de Sitter observer.


2018 ◽  
Vol 2018 (9) ◽  
Author(s):  
Evgeny I. Buchbinder ◽  
Jessica Hutomo ◽  
Sergei M. Kuzenko

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2052
Author(s):  
Ioseph L. Buchbinder ◽  
Timofey V. Snegirev

We derived the component Lagrangian for the free N-extended on-shell massless higher spin supermultiplets in four-dimensional anti-de Sitter space. The construction was based on the frame-like description of massless integer and half-integer higher spin fields. The massless supermultiplets were formulated for N≤4k, where k is a maximal integer or half-integer spin in the multiplet. The supertransformations that leave the Lagrangian invariant were found in explicit form and it was shown that their algebra is closed on-shell.


2019 ◽  
Vol 16 (04) ◽  
pp. 743-791
Author(s):  
Grigalius Taujanskas

We prove small data energy estimates of all orders of differentiability between past null infinity and future null infinity of de Sitter space for the conformally invariant Maxwell-scalar field system. Using these, we construct bounded and invertible, but nonlinear, scattering operators taking past asymptotic data to future asymptotic data. We deduce exponential decay rates for solutions with data having at least two derivatives, and for more regular solutions discover an asymptotic decoupling of the scalar field from the charge. The construction involves a carefully chosen complete gauge fixing condition which allows us to control all components of the Maxwell potential, and a nonlinear Grönwall inequality for higher-order estimates.


2016 ◽  
Vol 40 (11) ◽  
pp. 113102
Author(s):  
S. Parsamehr ◽  
M. Mohsenzadeh

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Mitsuhiro Kato ◽  
Kanji Nishii ◽  
Toshifumi Noumi ◽  
Toshiaki Takeuchi ◽  
Siyi Zhou

Abstract We study semiclassical spiky strings in de Sitter space and the corresponding Regge trajectories, generalizing the analysis in anti-de Sitter space. In particular we demonstrate that each Regge trajectory has a maximum spin due to de Sitter acceleration, similarly to the folded string studied earlier. While this property is useful for the spectrum to satisfy the Higuchi bound, it makes a nontrivial question how to maintain mildness of high-energy string scattering which we are familiar with in flat space and anti-de Sitter space. Our analysis implies that in order to have infinitely many higher spin states, one needs to consider infinitely many Regge trajectories with an increasing folding number.


Sign in / Sign up

Export Citation Format

Share Document