scholarly journals Antipodally symmetric gauge fields and higher-spin gravity in de Sitter space

2014 ◽  
Vol 2014 (10) ◽  
Author(s):  
Yasha Neiman
2018 ◽  
Vol 168 ◽  
pp. 01007 ◽  
Author(s):  
Yasha Neiman

This contribution is a status report on a research program aimed at obtaining quantum-gravitational physics inside a cosmological horizon through dS/CFT, i.e. through a holographic description at past/future infinity of de Sitter space. The program aims to bring together two main elements. The first is the observation by Anninos, Hartman and Strominger that Vasiliev’s higher-spin gravity provides a working model for dS/CFT in 3+1 dimensions. The second is the proposal by Parikh, Savonije and Verlinde that dS/CFT may prove more tractable if one works in so-called “elliptic” de Sitter space – a folded-in-half version of global de Sitter where antipodal points have been identified. We review some relevant progress concerning quantum field theory on elliptic de Sitter space, higher-spin gravity and its holographic duality with a free vector model. We present our reasons for optimism that the approach outlined here will lead to a full holographic description of quantum (higher-spin) gravity in the causal patch of a de Sitter observer.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Kirill Krasnov ◽  
Evgeny Skvortsov ◽  
Tung Tran

Abstract Higher Spin Gravities are scarce, but covariant actions for them are even scarcer. We construct covariant actions for contractions of Chiral Higher Spin Gravity that represent higher spin extensions of self-dual Yang-Mills and self-dual Gravity theories. The actions give examples of complete higher spin theories both in flat and (anti)-de Sitter spaces that feature gauge and gravitational interactions. The actions are based on a new description of higher spin fields, whose origin can be traced to early works on twistor theory. The new description simplifies the structure of interactions. In particular, we find a covariant form of the minimal gravitational interaction for higher spin fields both in flat and anti-de Sitter space, which resolves some of the puzzles in the literature.


1980 ◽  
Vol 96 (1-2) ◽  
pp. 105-109 ◽  
Author(s):  
A. Chakrabarti ◽  
A. Comtet ◽  
K.S. Viswanathan

2018 ◽  
Vol 2018 (9) ◽  
Author(s):  
Evgeny I. Buchbinder ◽  
Jessica Hutomo ◽  
Sergei M. Kuzenko

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2052
Author(s):  
Ioseph L. Buchbinder ◽  
Timofey V. Snegirev

We derived the component Lagrangian for the free N-extended on-shell massless higher spin supermultiplets in four-dimensional anti-de Sitter space. The construction was based on the frame-like description of massless integer and half-integer higher spin fields. The massless supermultiplets were formulated for N≤4k, where k is a maximal integer or half-integer spin in the multiplet. The supertransformations that leave the Lagrangian invariant were found in explicit form and it was shown that their algebra is closed on-shell.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Mitsuhiro Kato ◽  
Kanji Nishii ◽  
Toshifumi Noumi ◽  
Toshiaki Takeuchi ◽  
Siyi Zhou

Abstract We study semiclassical spiky strings in de Sitter space and the corresponding Regge trajectories, generalizing the analysis in anti-de Sitter space. In particular we demonstrate that each Regge trajectory has a maximum spin due to de Sitter acceleration, similarly to the folded string studied earlier. While this property is useful for the spectrum to satisfy the Higuchi bound, it makes a nontrivial question how to maintain mildness of high-energy string scattering which we are familiar with in flat space and anti-de Sitter space. Our analysis implies that in order to have infinitely many higher spin states, one needs to consider infinitely many Regge trajectories with an increasing folding number.


Author(s):  
Makoto Sakaguchi ◽  
Haruya Suzuki

Abstract We examine interacting bosonic higher spin gauge fields in the BRST-antifield formalism. Assuming that an interacting action S is a deformation of the free action with a deformation parameter g, we solve the master equation (S, S) = 0 from the lower orders in g. It is shown that choosing a certain cubic interaction as the first order deformation, we can solve the master equation and obtain an action containing all orders in g. The antighost number of the obtained action is less than or equal to two. Furthermore we show that the obtained action is lifted to that of interacting bosonic higher spin gauge fields on anti-de Sitter spaces.


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Rudranil Basu ◽  
Augniva Ray

AbstractWe find the exact quantum gravity partition function on the static patch of 3d de Sitter spacetime. We have worked in the Chern Simons formulation of 3d gravity. To obtain a non-perturbative result, we supersymmetrized the Chern Simons action and used the technique of supersymmetric localization. We have obtained an exact non-perturbative result for the spin-2 gravity case. We comment on the divergences present in the theory. We also comment on higher spin gravity theories and analyse the nature of divergences present in such theories.


Sign in / Sign up

Export Citation Format

Share Document