scholarly journals Spiky strings in de Sitter space

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Mitsuhiro Kato ◽  
Kanji Nishii ◽  
Toshifumi Noumi ◽  
Toshiaki Takeuchi ◽  
Siyi Zhou

Abstract We study semiclassical spiky strings in de Sitter space and the corresponding Regge trajectories, generalizing the analysis in anti-de Sitter space. In particular we demonstrate that each Regge trajectory has a maximum spin due to de Sitter acceleration, similarly to the folded string studied earlier. While this property is useful for the spectrum to satisfy the Higuchi bound, it makes a nontrivial question how to maintain mildness of high-energy string scattering which we are familiar with in flat space and anti-de Sitter space. Our analysis implies that in order to have infinitely many higher spin states, one needs to consider infinitely many Regge trajectories with an increasing folding number.

2015 ◽  
Vol 24 (07) ◽  
pp. 1550052 ◽  
Author(s):  
M. Reza Tanhayi

Recently in [P. R. Anderson and E. Mottola, Phys. Rev. D 89 (2014) 104039, arXiv:1310.1963 [gr-qc] and P. R. Anderson and E. Mottola, Phys. Rev. D 89 (2014) 104038, arXiv:1310.0030 [gr-qc].], it was shown that global de Sitter space is unstable even to the massive particle creation with no self-interactions. In this paper, we study the instability by making use of the coordinate-independent plane wave in de Sitter space. Within this formalism, we show that the previous results of instability of de Sitter space due to the particle creation can be generalized to higher-spin fields in a straightforward way. The so-called plane wave is defined globally in de Sitter space and de Sitter invariance is manifest since such modes are deduced from the group theoretical point of view by means of the Casimir operators. In fact, we employ the symmetry of embedding space namely the 4 + 1-dimensional flat space to write the field equations and the solutions can be obtained in terms of the plane wave in embedding space.


2018 ◽  
Vol 168 ◽  
pp. 01007 ◽  
Author(s):  
Yasha Neiman

This contribution is a status report on a research program aimed at obtaining quantum-gravitational physics inside a cosmological horizon through dS/CFT, i.e. through a holographic description at past/future infinity of de Sitter space. The program aims to bring together two main elements. The first is the observation by Anninos, Hartman and Strominger that Vasiliev’s higher-spin gravity provides a working model for dS/CFT in 3+1 dimensions. The second is the proposal by Parikh, Savonije and Verlinde that dS/CFT may prove more tractable if one works in so-called “elliptic” de Sitter space – a folded-in-half version of global de Sitter where antipodal points have been identified. We review some relevant progress concerning quantum field theory on elliptic de Sitter space, higher-spin gravity and its holographic duality with a free vector model. We present our reasons for optimism that the approach outlined here will lead to a full holographic description of quantum (higher-spin) gravity in the causal patch of a de Sitter observer.


2018 ◽  
Vol 2018 (9) ◽  
Author(s):  
Evgeny I. Buchbinder ◽  
Jessica Hutomo ◽  
Sergei M. Kuzenko

Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2052
Author(s):  
Ioseph L. Buchbinder ◽  
Timofey V. Snegirev

We derived the component Lagrangian for the free N-extended on-shell massless higher spin supermultiplets in four-dimensional anti-de Sitter space. The construction was based on the frame-like description of massless integer and half-integer higher spin fields. The massless supermultiplets were formulated for N≤4k, where k is a maximal integer or half-integer spin in the multiplet. The supertransformations that leave the Lagrangian invariant were found in explicit form and it was shown that their algebra is closed on-shell.


2016 ◽  
Vol 25 (01) ◽  
pp. 1650007 ◽  
Author(s):  
Leszek M. Sokołowski ◽  
Zdzisław A. Golda

In this paper, we refine and analytically prove an old proposition due to Calabi and Markus on the shape of timelike geodesics of anti-de Sitter space in the ambient flat space. We prove that each timelike geodesic forms in the ambient space a circle of the radius determined by [Formula: see text], lying on a Euclidean two-plane. Then, we outline an alternative proof for [Formula: see text]. We also make a comment on the shape of timelike geodesics in de Sitter space.


Author(s):  
Ignatios Antoniadis ◽  
Karim Benakli

The study of de-Sitter Reissner–Nordstrøm black holes allows us to uncover a Weak Gravity Conjecture in de-Sitter space. It states that for a given mass [Formula: see text] there should be a state with a charge [Formula: see text] bigger than a minimal value [Formula: see text], depending on the mass and the de-Sitter radius [Formula: see text], in Planck units. This reproduces the well-known flat space–time result [Formula: see text] in the large radius limit (large [Formula: see text]). In the highly curved de-Sitter space, ([Formula: see text]) [Formula: see text] behaves as [Formula: see text]. Finally, we discuss the case of backgrounds from gauged R-symmetry in [Formula: see text] supergravity. This paper is based on [I. Antoniadis and K. Benakli, Fortsch. Phys. 68, 2000054 (2020), arXiv:2006.12512 [hep-th]].


2000 ◽  
Vol 14 (22n23) ◽  
pp. 2499-2501
Author(s):  
HAROLD STEINACKER

An algebra of functions on q-deformed Anti-de Sitter space [Formula: see text] with star-structure is defined for roots of unity, which is covariant under Uq(so(2, D-1)). The scalar fields have an intrinsic high-energy cutoff, and arise most naturally on products of the quantum AdS space with a classical sphere. Hilbert spaces of scalar fields are constructed.


Sign in / Sign up

Export Citation Format

Share Document