The Tunneling Radiation from Non-Stationary Spherical Symmetry Black Holes and the Hamilton-Jacobi Equation

2016 ◽  
Vol 56 (2) ◽  
pp. 546-553 ◽  
Author(s):  
Shu-Zheng Yang ◽  
Zhong-Wen Feng ◽  
Hui-Ling Li
2019 ◽  
Vol 35 (10) ◽  
pp. 2050061
Author(s):  
Z. Luo ◽  
X. G. Lan

It is suggested that the dispersion relation might be corrected at higher energy scales and lead to the deformed Hamilton–Jacobi equation. In this paper, we use the correction to investigate the fermion tunneling radiation for Demianski–Newman black hole spacetime, and the result shows that the corresponding Hawking temperature and the black hole entropy are related to the angular parameters of the black hole coordinates.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Haroldo C. D. Lima Junior ◽  
Luís C. B. Crispino ◽  
Pedro V. P. Cunha ◽  
Carlos A. R. Herdeiro

AbstractObtaining solutions of the Einstein field equations describing spinning compact bodies is typically challenging. The Newman–Janis algorithm provides a procedure to obtain rotating spacetimes from a static, spherically symmetric, seed metric. It is not guaranteed, however, that the resulting rotating spacetime solves the same field equations as the seed. Moreover, the former may not be circular, and thus expressible in Boyer–Lindquist-like coordinates. Amongst the variations of the original procedure, a modified Newman–Janis algorithm (MNJA) has been proposed that, by construction, originates a circular, spinning spacetime, expressible in Boyer–Lindquist-like coordinates. As a down side, the procedure introduces an ambiguity, that requires extra assumptions on the matter content of the model. In this paper we observe that the rotating spacetimes obtained through the MNJA always admit separability of the Hamilton–Jacobi equation for the case of null geodesics, in which case, moreover, the aforementioned ambiguity has no impact, since it amounts to an overall metric conformal factor. We also show that the Hamilton–Jacobi equation for light rays propagating in a plasma admits separability if the plasma frequency obeys a certain constraint. As an illustration, we compute the shadow and lensing of some spinning black holes obtained by the MNJA.


2010 ◽  
Vol 833 (1-2) ◽  
pp. 1-16 ◽  
Author(s):  
L. Andrianopoli ◽  
R. D'Auria ◽  
E. Orazi ◽  
M. Trigiante

2019 ◽  
Vol 34 (29) ◽  
pp. 1950242
Author(s):  
Ding-Qun Chao ◽  
Shu-Zheng Yang ◽  
Zhong-Wen Feng

In this paper, we derived Hamilton–Jacobi equation for spin 1/2 and 3/2 fermions from Dirac equation and Rarita–Schwinger equation. Then, by using the Hamilton–Jacobi equation and general tortoise coordinate transformation, the tunneling rate and Hawking temperatures of a nonstationary axisymmetric symmetry black hole are investigated. The result shows that the tunneling rate, temperature and surface gravity are all related to the properties of horizons of the black hole, the cosmological constant [Formula: see text], the charge [Formula: see text], mass of black hole [Formula: see text] and the Eddington time [Formula: see text].


2020 ◽  
Vol 23 (3) ◽  
pp. 306-311
Author(s):  
Yu. Kurochkin ◽  
Dz. Shoukavy ◽  
I. Boyarina

The immobility of the center of mass in spaces of constant curvature is postulated based on its definition obtained in [1]. The system of two particles which interact through a potential depending only on the distance between particles on a three-dimensional sphere is considered. The Hamilton-Jacobi equation is formulated and its solutions and trajectory equations are found. It was established that the reduced mass of the system depends on the relative distance.


Author(s):  
Jennifer Coopersmith

Hamilton’s genius was to understand what were the true variables of mechanics (the “p − q,” conjugate coordinates, or canonical variables), and this led to Hamilton’s Mechanics which could obtain qualitative answers to a wider ranger of problems than Lagrangian Mechanics. It is explained how Hamilton’s canonical equations arise, why the Hamiltonian is the “central conception of all modern theory” (quote of Schrödinger’s), what the “p − q” variables are, and what phase space is. It is also explained how the famous conservation theorems arise (for energy, linear momentum, and angular momentum), and the connection with symmetry. The Hamilton-Jacobi Equation is derived using infinitesimal canonical transformations (ICTs), and predicts wavefronts of “common action” spreading out in (configuration) space. An analogy can be made with geometrical optics and Huygen’s Principle for the spreading out of light waves. It is shown how Hamilton’s Mechanics can lead into quantum mechanics.


Author(s):  
Razvan Gabriel Iagar ◽  
Philippe Laurençot

A classification of the behaviour of the solutions f(·, a) to the ordinary differential equation (|f′|p-2f′)′ + f - |f′|p-1 = 0 in (0,∞) with initial condition f(0, a) = a and f′(0, a) = 0 is provided, according to the value of the parameter a > 0 when the exponent p takes values in (1, 2). There is a threshold value a* that separates different behaviours of f(·, a): if a > a*, then f(·, a) vanishes at least once in (0,∞) and takes negative values, while f(·, a) is positive in (0,∞) and decays algebraically to zero as r→∞ if a ∊ (0, a*). At the threshold value, f(·, a*) is also positive in (0,∞) but decays exponentially fast to zero as r→∞. The proof of these results relies on a transformation to a first-order ordinary differential equation and a monotonicity property with respect to a > 0. This classification is one step in the description of the dynamics near the extinction time of a diffusive Hamilton–Jacobi equation with critical gradient absorption and fast diffusion.


Sign in / Sign up

Export Citation Format

Share Document