Surface energy balance using satellite data for the water balance of a traditional irrigation—wetland system in SW Iran

2005 ◽  
Vol 19 (1) ◽  
pp. 89-105 ◽  
Author(s):  
A. M. J. Meijerink ◽  
A. S. M. Gieske ◽  
Z. Vekerdy
2009 ◽  
Vol 13 (7) ◽  
pp. 1061-1074 ◽  
Author(s):  
M. Minacapilli ◽  
C. Agnese ◽  
F. Blanda ◽  
C. Cammalleri ◽  
G. Ciraolo ◽  
...  

Abstract. Actual evapotranspiration from typical Mediterranean crops has been assessed in a Sicilian study area by using surface energy balance (SEB) and soil-water balance models. Both modelling approaches use remotely sensed data to estimate evapotranspiration fluxes in a spatially distributed way. The first approach exploits visible (VIS), near-infrared (NIR) and thermal (TIR) observations to solve the surface energy balance equation whereas the soil-water balance model uses only VIS-NIR data to detect the spatial variability of crop parameters. Considering that the study area is characterized by typical spatially sparse Mediterranean vegetation, i.e. olive, citrus and vineyards, alternating bare soil and canopy, we focused the attention on the main conceptual differences between one-source and two-sources energy balance models. Two different models have been tested: the widely used one-source SEBAL model, where soil and vegetation are considered as the sole source (mostly appropriate in the case of uniform vegetation coverage) and the two-sources TSEB model, where soil and vegetation components of the surface energy balance are treated separately. Actual evapotranspiration estimates by means of the two surface energy balance models have been compared vs. the outputs of the agro-hydrological SWAP model, which was applied in a spatially distributed way to simulate one-dimensional water flow in the soil-plant-atmosphere continuum. Remote sensing data in the VIS and NIR spectral ranges have been used to infer spatially distributed vegetation parameters needed to set up the upper boundary condition of SWAP. Actual evapotranspiration values obtained from the application of the soil water balance model SWAP have been considered as the reference to be used for energy balance models accuracy assessment. Airborne hyperspectral data acquired during a NERC (Natural Environment Research Council, UK) campaign in 2005 have been used. The results of this investigation seem to prove a slightly better agreement between SWAP and TSEB for some fields of the study area. Further investigations are programmed in order to confirm these indications.


2016 ◽  
Vol 36 (6) ◽  
pp. 1176-1185 ◽  
Author(s):  
Elizabeth Ferreira ◽  
Christiaan M. Mannaerts ◽  
Antonio A. Dantas ◽  
Bernardus H. Maathuis

2020 ◽  
Vol 12 (16) ◽  
pp. 2528 ◽  
Author(s):  
Lichang Yin ◽  
Xiaofeng Wang ◽  
Xiaoming Feng ◽  
Bojie Fu ◽  
Yongzhe Chen

Accurate evapotranspiration (ET) estimation is important in understanding the hydrological cycle and improving water resource management. The operational simplified surface energy balance (SSEBop) model can be set up quickly for the routine monitoring of ET. Several studies have suggested that the SSEBop model, which can simulate ET, has performed inconsistently across the United States. There are few detailed studies on the evaluation of ET simulated by SSEBop in other regions. To explore the potential and application scope of the SSEBop model, more evaluation of the ET simulated by SSEBop is clearly needed. We calculated the SSEBop-model-based ET (ETSSEBopYRB) with land surface temperature product of MOD11A2 and climate variables as inputs for the Yellow River Basin (YRB), China. We also compared the ETSSEBopYRB with eight coarse resolution ET products, including China ETMTE, produced using the upscaling energy flux method; China ETCR, which is generated using the non-linear complementary relationship model; three global products based on the Penman–Monteith logic (ETPMLv2, ETMODIS, and ETBESS), two global ET products based on the surface energy balance (ETSEBS, ETSSEBopGlo), and integrated ET products based on the Bayesian model averaging method (ETGLASS), using the annual ET data derived from the water balance method (WB-ET) for fourteen catchments. We found that ETSSEBopYRB and the other eight ET products were able to explain 23 to 52% of the variability in the water balance ET for fourteen small catchments in the YRB. ETSSEBopYRB had a better agreement with WB-ET than ETSEBS, ETMODIS, ETCR, and ETGLASS, with lower RMSE (88.3 mm yr−1 vs. 121.7 mm yr−1), higher R2 (0.49 vs. 0.43), and lower absolute RPE (−3.3% vs. –19.9%) values for the years 2003–2015. We also found that the uncertainties of the spatial patterns of the average annual ET values and the ET trends were still large for different ET products. Third, we found that the free global ET product derived from the SSEBop model (ETSSEBopGlo) highly underestimated the annual total ET trend for the YRB. The poor performance of the land surface temperature product of MOD11A2 in 2015 caused the large ETSSEBopYRB uncertainty at eight-day and monthly scales. Further evaluation of ET based on the SSEBop model for site measurements is needed.


2021 ◽  
pp. 1-19
Author(s):  
Rebecca L. Stewart ◽  
Matthew Westoby ◽  
Francesca Pellicciotti ◽  
Ann Rowan ◽  
Darrel Swift ◽  
...  

Abstract Surface energy-balance models are commonly used in conjunction with satellite thermal imagery to estimate supraglacial debris thickness. Removing the need for local meteorological data in the debris thickness estimation workflow could improve the versatility and spatiotemporal application of debris thickness estimation. We evaluate the use of regional reanalysis data to derive debris thickness for two mountain glaciers using a surface energy-balance model. Results forced using ERA-5 agree with AWS-derived estimates to within 0.01 ± 0.05 m for Miage Glacier, Italy, and 0.01 ± 0.02 m for Khumbu Glacier, Nepal. ERA-5 data were then used to estimate spatiotemporal changes in debris thickness over a ~20-year period for Miage Glacier, Khumbu Glacier and Haut Glacier d'Arolla, Switzerland. We observe significant increases in debris thickness at the terminus for Haut Glacier d'Arolla and at the margins of the expanding debris cover at all glaciers. While simulated debris thickness was underestimated compared to point measurements in areas of thick debris, our approach can reconstruct glacier-scale debris thickness distribution and its temporal evolution over multiple decades. We find significant changes in debris thickness over areas of thin debris, areas susceptible to high ablation rates, where current knowledge of debris evolution is limited.


2020 ◽  
pp. 1-16
Author(s):  
Tim Hill ◽  
Christine F. Dow ◽  
Eleanor A. Bash ◽  
Luke Copland

Abstract Glacier surficial melt rates are commonly modelled using surface energy balance (SEB) models, with outputs applied to extend point-based mass-balance measurements to regional scales, assess water resource availability, examine supraglacial hydrology and to investigate the relationship between surface melt and ice dynamics. We present an improved SEB model that addresses the primary limitations of existing models by: (1) deriving high-resolution (30 m) surface albedo from Landsat 8 imagery, (2) calculating shadows cast onto the glacier surface by high-relief topography to model incident shortwave radiation, (3) developing an algorithm to map debris sufficiently thick to insulate the glacier surface and (4) presenting a formulation of the SEB model coupled to a subsurface heat conduction model. We drive the model with 6 years of in situ meteorological data from Kaskawulsh Glacier and Nàłùdäy (Lowell) Glacier in the St. Elias Mountains, Yukon, Canada, and validate outputs against in situ measurements. Modelled seasonal melt agrees with observations within 9% across a range of elevations on both glaciers in years with high-quality in situ observations. We recommend applying the model to investigate the impacts of surface melt for individual glaciers when sufficient input data are available.


Sign in / Sign up

Export Citation Format

Share Document