scholarly journals Using climate reanalysis data in conjunction with multi-temporal satellite thermal imagery to derive supraglacial debris thickness changes from energy-balance modelling

2021 ◽  
pp. 1-19
Author(s):  
Rebecca L. Stewart ◽  
Matthew Westoby ◽  
Francesca Pellicciotti ◽  
Ann Rowan ◽  
Darrel Swift ◽  
...  

Abstract Surface energy-balance models are commonly used in conjunction with satellite thermal imagery to estimate supraglacial debris thickness. Removing the need for local meteorological data in the debris thickness estimation workflow could improve the versatility and spatiotemporal application of debris thickness estimation. We evaluate the use of regional reanalysis data to derive debris thickness for two mountain glaciers using a surface energy-balance model. Results forced using ERA-5 agree with AWS-derived estimates to within 0.01 ± 0.05 m for Miage Glacier, Italy, and 0.01 ± 0.02 m for Khumbu Glacier, Nepal. ERA-5 data were then used to estimate spatiotemporal changes in debris thickness over a ~20-year period for Miage Glacier, Khumbu Glacier and Haut Glacier d'Arolla, Switzerland. We observe significant increases in debris thickness at the terminus for Haut Glacier d'Arolla and at the margins of the expanding debris cover at all glaciers. While simulated debris thickness was underestimated compared to point measurements in areas of thick debris, our approach can reconstruct glacier-scale debris thickness distribution and its temporal evolution over multiple decades. We find significant changes in debris thickness over areas of thin debris, areas susceptible to high ablation rates, where current knowledge of debris evolution is limited.

2021 ◽  
Vol 40 ◽  
Author(s):  
Xiaowei Zou ◽  
Minghu Ding ◽  
Weijun Sun ◽  
Diyi Yang ◽  
Weigang Liu ◽  
...  

The ability to simulate the surface energy balance is key to studying land–atmosphere interactions; however, it remains a weakness in Arctic polar sciences. Based on the analysis of meteorological data from 1 June to 30 September 2014 from an automatic weather station on the glacier Austre Lovénbreen, near Ny–Ålesund, Svalbard, we established a surface energy balance model to simulate surface melt. The results reveal that the net shortwave radiation accounts for 87% (39 W m–2) of the energy sources, and is controlled by cloud cover and surface albedo. The sensible heat equals 6 W m–2 and is a continuous energy source at the glacier surface. Net longwave radiation and latent heat account for 31% and 5% of heat sinks, respectively. The simulated summer mass balance equals –793 mm w.e., agreeing well with the observation by an ultrasonic ranger.


2020 ◽  
pp. 1-16
Author(s):  
Tim Hill ◽  
Christine F. Dow ◽  
Eleanor A. Bash ◽  
Luke Copland

Abstract Glacier surficial melt rates are commonly modelled using surface energy balance (SEB) models, with outputs applied to extend point-based mass-balance measurements to regional scales, assess water resource availability, examine supraglacial hydrology and to investigate the relationship between surface melt and ice dynamics. We present an improved SEB model that addresses the primary limitations of existing models by: (1) deriving high-resolution (30 m) surface albedo from Landsat 8 imagery, (2) calculating shadows cast onto the glacier surface by high-relief topography to model incident shortwave radiation, (3) developing an algorithm to map debris sufficiently thick to insulate the glacier surface and (4) presenting a formulation of the SEB model coupled to a subsurface heat conduction model. We drive the model with 6 years of in situ meteorological data from Kaskawulsh Glacier and Nàłùdäy (Lowell) Glacier in the St. Elias Mountains, Yukon, Canada, and validate outputs against in situ measurements. Modelled seasonal melt agrees with observations within 9% across a range of elevations on both glaciers in years with high-quality in situ observations. We recommend applying the model to investigate the impacts of surface melt for individual glaciers when sufficient input data are available.


2008 ◽  
Vol 47 (3) ◽  
pp. 819-834 ◽  
Author(s):  
Timothy M. Barzyk ◽  
John E. Frederick

Abstract Individual structures within the same local-scale (102–104 m) environment may experience different microscale (<103 m) climates. Urban microclimate variations are often a result of site-specific features, including spatial and material characteristics of surfaces and surrounding structures. A semiempirical surface energy balance model is presented that incorporates radiative and meteorological measurements to statistically parameterize energy fluxes that are not measured directly, including sensible heat transport, storage heat flux through conduction, and evaporation (assumed to be negligible under dry conditions). Two Chicago rooftops were chosen for detailed study. The City Hall site was located in an intensely developed urban area characterized by close-set high-rise buildings. The University rooftop was in a highly developed area characterized by three- to seven-story buildings of stone, concrete, and brick construction. Two identical sets of instruments recorded measurements contemporaneously from these rooftops during summer 2005, and results from the week of 29 July to 5 August are presented here. The model explains 83.7% and 96% of the variance for the City Hall and University sites, respectively. Results apply to a surface area of approximately 1260 m2, at length scales similar to the dimensions of built structures and other urban elements. A site intercomparison revealed variations in surface energy balance components caused by site-specific features and demonstrated the relevance of the model to urban applications.


2009 ◽  
Vol 28 (1) ◽  
pp. 51-64 ◽  
Author(s):  
Luis Octavio Lagos ◽  
Derrel L. Martin ◽  
Shashi B. Verma ◽  
Andrew Suyker ◽  
Suat Irmak

2020 ◽  
Author(s):  
Tobias Sauter ◽  
Anselm Arndt ◽  
Christoph Schneider

Abstract. Glacial changes play a key role both from a socio-economical and political, and scientific point of view. The identification and the understanding of the nature of these changes still poses fundamental challenges for climate, glacier and water research. Many studies aim to identify the climatic drivers behind the observed glacial changes using distributed surface mass and energy balance models. Distributed surface mass balance models, which translate the meteorological conditions on glaciers into local melting rates, thus offer the possibility to attribute and detect glacier mass and volume responses to changes in the climatic forcings. A well calibrated model is a suitable test-bed for sensitivity, detection and attribution analyses for many scientific applications and often serves as a tool for quantifying the inherent uncertainties. Here we present the open-source coupled snowpack and ice surface energy and mass balance model in Python COSIPY, which provides a lean, flexible and user-friendly framework for modelling distributed snow and glacier mass changes. The model has a modular structure so that the exchange of routines or parameterizations of physical processes is possible with little effort for the user. The model has a modular structure so that the exchange of routines or parameterizations of physical processes is possible with little effort for the user. The framework consists of a computational kernel, which forms the runtime environment and takes care of the initialization, the input-output routines, the parallelization as well as the grid and data structures. This structure offers maximum flexibility without having to worry about the internal numerical flow. The adaptive sub-surface scheme allows an efficient and fast calculation of the otherwise computationally demanding fundamental equations. The surface energy-balance scheme uses established standard parameterizations for radiation as well as for the energy exchange between atmosphere and surface. The schemes are coupled by solving both surface energy balance and subsurface fluxes iteratively in such that consistent surface skin temperature is returned at the interface. COSIPY uses a one-dimensional approach limited to the vertical fluxes of energy and matter but neglects any lateral processes. Accordingly, the model can be easily set up in parallel computational environments for calculating both energy balance and climatic surface mass balance of glacier surfaces based on flexible horizontal grids and with varying temporal resolution. The model is made available on a freely accessible site and can be used for non-profit purposes. Scientists are encouraged to actively participate in the extension and improvement of the model code.


2009 ◽  
Vol 48 (4) ◽  
pp. 693-715 ◽  
Author(s):  
Toru Kawai ◽  
Mohammad Kholid Ridwan ◽  
Manabu Kanda

Abstract The authors’ objective was to apply the Simple Urban Energy Balance Model for Mesoscale Simulation (SUMM) to cities. Data were selected from 1-yr flux observations conducted at three sites in two cities: one site in Kugahara, Japan (Ku), and two sites in Basel, Switzerland (U1 and U2). A simple vegetation scheme was implemented in SUMM to apply the model to vegetated cities, and the surface energy balance and radiative temperature TR were evaluated. SUMM generally reproduced seasonal and diurnal trends of surface energy balance and TR at Ku and U2, whereas relatively large errors were obtained for the daytime results of sensible heat flux QH and heat storage ΔQS at U1. Overall, daytime underestimations of QH and overestimations of ΔQS and TR were common. These errors were partly induced by the poor parameterization of the natural logarithm of the ratio of roughness length for momentum to heat (κB−1); that is, the observed κB−1 values at vegetated cities were smaller than the simulated values. The authors proposed a new equation for predicting this coefficient. This equation accounts for the existence of vegetation and improves the common errors described above. With the modified formula for κB−1, simulated net all-wave radiation and TR agreed well with observed values, regardless of site and season. However, at U1, simulated QH and ΔQS were still overestimated and underestimated, respectively, relative to observed values.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 9 ◽  
Author(s):  
Dakang Wang ◽  
Yulin Zhan ◽  
Tao Yu ◽  
Yan Liu ◽  
Xiaomei Jin ◽  
...  

Using Surface Energy Balance System (SEBS) to estimate actual evapotranspiration (ET) on a regional scale generally uses gridded meteorological data by interpolating data from meteorological stations with mathematical interpolation. The heterogeneity of underlying surfaces cannot be effectively considered when interpolating meteorological station measurements to gridded data only by mathematical interpolation. This study aims to highlight the improvement of modeled meteorological data from the Weather Research and Forecasting (WRF) mesoscale numerical model which fully considers the heterogeneity of underlying surfaces over the data from mathematical interpolation method when providing accurate meteorological input for SEBS model. Meteorological data at 1 km resolution in the Hotan Oasis were simulated and then were put into SEBS model to estimate the daily actual ET. The accuracy of WRF simulation was evaluated through comparison with data collected at the meteorological station. Results found that the WRF-simulated wind speed, air temperature, relative humidity and surface pressure correlate well with the meteorological stations measurements (R2 are 0.628, 0.8242, 0.8089 and 0.8915, respectively). Comparison between ET calculated using the meteorological data simulated from the WRF (ETa-WRF) and meteorological data interpolated from measurements at met stations (ETa-STA) showed that ETa-WRF could better reflect the ET difference between different land cover, and capture the vegetation growing trend, especially in areas with sparse vegetation, where ETa-STA intends to overestimate. In addition, ETa-WRF has less noise in barren areas compared to ETa-STA. Our findings suggest that WRF can provide more reliable meteorological input for SEBS model than mathematical interpolation method.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1747 ◽  
Author(s):  
Camilo Souto ◽  
Octavio Lagos ◽  
Eduardo Holzapfel ◽  
Mahesh Lal Maskey ◽  
Lynn Wunderlich ◽  
...  

A surface energy balance model was conceived to estimate crop transpiration and soil evaporation in orchards and vineyards where the floor is partially wetted by micro-irrigation systems. The proposed surface energy balance model for partial wetting (SEB-PW) builds upon previous multiple-layer modelling approaches to estimate the latent, sensible, and soil heat fluxes, while partitioning the total evapotranspiration ( E T ) into dry and wet soil evaporation ( λ E s o i l ) and crop transpiration ( T ). The model estimates the energy balance and flux resistances for the evaporation from dry and wet soil areas below the canopy, evaporation from dry and wet soil areas between plant rows, crop transpiration, and total crop E T . This article describes the model development, sensitivity analysis and a preliminary model evaluation. The evaluation shows that simulated hourly E T values have a good correlation with field measurements conducted with the surface renewal method and micro-lysimeter measurements in a micro-irrigated winegrape vineyard of Northern California for a range of fractional crop canopy cover conditions. Evaluation showed that hourly L E estimates had root mean square error ( R M S E ) of 58.6 W m−2, mean absolute error ( M A E ) of 35.6 W m−2, Nash-Sutcliffe coefficient ( C N S ) of 0.85, and index of agreement ( d a ) of 0.94. Daily soil evaporation ( E s ) estimations had R M S E of 0.30 mm d−1, M A E of 0.24 mm d−1, C N S of 0.87, and d a of 0.94. E s estimation had a coefficient of determination ( r 2 ) of 0.95, when compared with the micro-lysimeter measurements, which showed that E s can reach values from 28% to 46% of the total E T after an irrigation event. The proposed SEB-PW model can be used to estimate the effect and significance of soil evaporation from wet and dry soil areas on the total E T , and to inform water balance studies for optimizing irrigation management. Further evaluation is needed to test the model in other partially wetted orchards and to test the model performance during all growing seasons and for different environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document