scholarly journals MTHFR (methylenetetrahydrofolate reductase: EC 1.5.1.20) SNPs (single-nucleotide polymorphisms) and homocysteine in patients referred for investigation of fertility

Author(s):  
Yves Ménézo ◽  
Pasquale Patrizio ◽  
Silvia Alvarez ◽  
Edouard Amar ◽  
Michel Brack ◽  
...  

Abstract Purpose MTHFR, one of the major enzymes in the folate cycle, is known to acquire single-nucleotide polymorphisms that significantly reduce its activity, resulting in an increase in circulating homocysteine. Methylation processes are of crucial importance in gametogenesis, involved in the regulation of imprinting and epigenetic tags on DNA and histones. We have retrospectively assessed the prevalence of MTHFR SNPs in a population consulting for infertility according to gender and studied the impact of the mutations on circulating homocysteine levels. Methods More than 2900 patients having suffered at least two miscarriages (2 to 9) or two failed IVF/ICSI (2 to 10) attempts were included for analysis of MTHFR SNPs C677T and A1298C. Serum homocysteine levels were measured simultaneously. Results We observed no difference in the prevalence of different genetic backgrounds between men and women; only 15% of the patients were found to be wild type. More than 40% of the patients are either homozygous for one SNP or compound heterozygous carriers. As expected, the C677T SNP shows the greatest adverse effect on homocysteine accumulation. The impact of MTHFR SNPs on circulating homocysteine is different in men than in women. Conclusions Determination of MTHFR SNPs in both men and women must be seriously advocated in the presence of long-standing infertility; male gametes, from MTHFR SNPs carriers, are not exempted from exerting a hazardous impact on fertility. Patients should be informed of the pleiotropic medical implications of these SNPs for their own health, as well as for the health of future children.

2010 ◽  
Vol 34 (8) ◽  
pp. S75-S75
Author(s):  
Weifeng Zhu ◽  
Zhuoqi Liu ◽  
Daya Luo ◽  
Xinyao Wu ◽  
Fusheng Wan

2015 ◽  
Vol 308 (9) ◽  
pp. C758-C766 ◽  
Author(s):  
Xinjun Cindy Zhu ◽  
Rafiquel Sarker ◽  
John R. Horton ◽  
Molee Chakraborty ◽  
Tian-E Chen ◽  
...  

Genetic determinants appear to play a role in susceptibility to chronic diarrhea, but the genetic abnormalities involved have only been identified in a few conditions. The Na+/H+ exchanger 3 (NHE3) accounts for a large fraction of physiologic intestinal Na+ absorption. It is highly regulated through effects on its intracellular COOH-terminal regulatory domain. The impact of genetic variation in the NHE3 gene, such as single nucleotide polymorphisms (SNPs), on transporter activity remains unexplored. From a total of 458 SNPs identified in the entire NHE3 gene, we identified three nonsynonymous mutations (R474Q, V567M, and R799C), which were all in the protein's intracellular COOH-terminal domain. Here we evaluated whether these SNPs affect NHE3 activity by expressing them in a mammalian cell line that is null for all plasma membrane NHEs. These variants significantly reduced basal NHE3 transporter activity through a reduction in intrinsic NHE3 function in variant R474Q, abnormal trafficking in variant V567M, or defects in both intrinsic NHE3 function and trafficking in variant R799C. In addition, variants NHE3 R474Q and R799C failed to respond to acute dexamethasone stimulation, suggesting cells with these mutant proteins might be defective in NHE3 function during postprandial stimulation and perhaps under stressful conditions. Finally, variant R474Q was shown to exhibit an aberrant interaction with calcineurin B homologous protein (CHP), an NHE3 regulatory protein required for basal NHE3 activity. Taken together, these results demonstrate decreased transport activity in three SNPs of NHE3 and provide mechanistic insight into how these SNPs impact NHE3 function.


2012 ◽  
Vol 40 (5) ◽  
pp. 856-864 ◽  
Author(s):  
Tobias Hartmann ◽  
Mineko Terao ◽  
Enrico Garattini ◽  
Christian Teutloff ◽  
Joshua F. Alfaro ◽  
...  

Vaccine ◽  
2020 ◽  
Vol 38 (40) ◽  
pp. 6224-6235
Author(s):  
Nicole L. Messina ◽  
Mihai G. Netea ◽  
Nigel Curtis

Biochimie ◽  
2019 ◽  
Vol 163 ◽  
pp. 73-83 ◽  
Author(s):  
Irina V. Alekseeva ◽  
Anastasiia T. Davletgildeeva ◽  
Olga V. Arkova ◽  
Nikita A. Kuznetsov ◽  
Olga S. Fedorova

Sign in / Sign up

Export Citation Format

Share Document