folate cycle
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 65)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
Olesya Efremova ◽  
Irina Ponomarenko ◽  
Mikhail Churnosov

Background: Key reactions in folate-mediated single-carbon metabolism are regulated by folate cycle enzymes. Violations of the folate cycle may be associated with the occurrence of fetal growth restriction (FGR) in pregnant women. Objective: To study the relationship between polymorphisms of folate cycle genes in the mother with the development of FGR. Materials and Methods: In this case-control study, 122 pregnant women with FGR and 243 pregnant women with normal newborn weight were enrolled. The polymorphic loci of folate cycle genes including rs1805087 5-methylenetetrahydrofolate (MTR) and rs1979277 serine hydroxymethyl transferase (SHMT1) were examined. The study of polymorphisms was carried out through the TaqMan probe detection method using polymerase chain reaction. Logistic regression was used to analyze the associations of the polymorphisms. Results: It was established that the T allele rs1979277 of the SHMT1 gene was correlated with the development of FGR within the framework of the allelic (OR = 1.67, 95% CI 1.20-2.33, pperm < 0.01), additive (OR = 1.69, 95% CI 1.20-2.37, pperm < 0.01), dominant (OR = 1.81, 95% CI 1.15-2.87, pperm = 0.01) and recessive (OR = 2.34, 95% CI 1.15-4.73, pperm = 0.01) models. The association of the G rs1805087 allele of the MTR gene with the occurrence of FGR was also identified following the recessive model (OR = 3.01, 95% CI 1.05-8.68, pperm = 0.04). Conclusion: Our results indicated that maternal polymorphic loci rs1979277 SHMT1 and rs1805087 MTR may be associated with the development of FGR. Key words: Polymorphism, Associations, Fetal growth restriction, Folic acid.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 214
Author(s):  
Eirini Lionaki ◽  
Christina Ploumi ◽  
Nektarios Tavernarakis

One-carbon metabolism (OCM) is a network of biochemical reactions delivering one-carbon units to various biosynthetic pathways. The folate cycle and methionine cycle are the two key modules of this network that regulate purine and thymidine synthesis, amino acid homeostasis, and epigenetic mechanisms. Intersection with the transsulfuration pathway supports glutathione production and regulation of the cellular redox state. Dietary intake of micronutrients, such as folates and amino acids, directly contributes to OCM, thereby adapting the cellular metabolic state to environmental inputs. The contribution of OCM to cellular proliferation during development and in adult proliferative tissues is well established. Nevertheless, accumulating evidence reveals the pivotal role of OCM in cellular homeostasis of non-proliferative tissues and in coordination of signaling cascades that regulate energy homeostasis and longevity. In this review, we summarize the current knowledge on OCM and related pathways and discuss how this metabolic network may impact longevity and neurodegeneration across species.


Author(s):  
З.Г. Тадтаева ◽  
Е.Е. Яковлева ◽  
А.В. Амелин

В обзоре обсуждается роль полиморфизма гена фолатного обмена метилентетрагидрофолат-редуктазы (MTHFR), ответственного за развитие гипергомоцистеинемии в патогенезе мигрени. Изложены общие данные о полиморфизме С677 гена фолатного цикла и метаболизме гомоцистеина. Представлен патогенетический механизм развития мигрени, связанный с провоспалительными, прокоагулянтными свойствами гомоцистеина, активацией процессов окислительного стресса, эндотелиальной дисфункцией и нейрогенным воспалением при повышении концентрации этой аминокислоты. Отражены перспективы и социальная значимость имплементации данных генетических исследований в клиническую практику, их роль в прогнозировании течения мигрени и оценке риска развития осложнений, а также коррекции фармакотерапевтических подходов. Методика. Для поиска данных в базах MEDLINE, SCOPUS и Web of Science использованы поисковые запросы: МТHFR, мигрень, патофизиология, гипергомоцистеинемия, таргетная терапия. The review discusses the role of polymorphism of the methylenetetrahydrofolate reductase (MTHFR) folate metabolism gene responsible for hyperhomocysteinemia in the pathogenesis of migraine. Data on the polymorphism of the folate cycle gene C677 and homocysteine metabolism are presented. The pathogenetic mechanism of migraine associated with proinflammatory, procoagulant properties of homocysteine and with the activation of oxidative stress, endothelial dysfunction, and neurogenic inflammation related with increased concentrations of homocysteine is described. Prospects and social significance of implementing data of genetic research into clinical practice are discussed. Included is the role of genetic research in predicting the course and complications of migraine, in assessment of risk for complications, and in pharmacotherapeutic approaches to migraine treatment. Methods. MEDLINE, SCOPUS and Web of Science databases were used to search for data: MTHFR, migraine, pathophysiology, hyperhomocysteinemia, targeted therapy


2021 ◽  
Vol 12_2021 ◽  
pp. 96-101
Author(s):  
Altukhova O.B. Altukhova ◽  
Radzinsky V.E. Radzinsky ◽  
Polyakova I.S. Polyakova ◽  
Sirotina S.S. Sirotina S ◽  
Churnosov M.I. Churnosov ◽  
...  

Author(s):  
D. V. Maltsev

The results of five meta‑analyzes indicate the association of autism spectrum disorders (ASD) with genetic deficiency of the folate cycle (GDFC) in children. In such cases, specific encephalopathy is formed with predominant immune‑dependent pathways of pathogenesis, the radiological signs of which are insufficiently studied. Objective —— to describe the typical neuroimaging signs of encephalopathy in children with GDFC suffering from ASD, and to find correlations between clinical signs, mechanisms of nervous system damage and neuroimaging data to optimize the algorithm of diagnosis, monitoring and treatment. Methods and subjects. The retrospective analysis of medical data of 225 children aged 2 to 9 years with GDFC, in which there were clinical manifestations of ASD (183 boys and 42 girls). The diagnosis of ASD was made by child psychiatrists according to the criteria of DSM‑IV‑TR (Diagnostic and Statistical Manual of mental disorders) and ICD‑10 (The International Statistical Classification of Diseases and Related Health Problems). Pathogenic polymorphic variants of folate cycle genes were determined by PCR with restriction. Neuroimaging was performed by MRI of the brain in conventional modes (T1‑ and T2‑weighted, FLAIR) on tomographs with a magnetic induction of 1.5 T. To study the associations between the indicators, the odds ratio (OR) and the 95 % confidence interval (95 % SI) were used. Results. There are 5 main groups of neuroimaging signs characteristic of leukoencephalopathy, temporal mesial sclerosis, PANS/PITANDS/PANDAS, congenital CMV neuroinfection and postnatal encephalitis, mild congenital CNS abnormalities. Neuroimaging signs are closely associated with the results of special laboratory tests that characterize the known immune‑dependent mechanisms of CNS damage, and with the emergence of relevant clinical syndromes, consistent with modern concepts of major infectious or autoimmune lesions of the nervous system in immunosuppressed patients. Laboratory‑radiological‑clinical complexes (virus‑induced temporal mesial sclerosis, autoimmune limbic encephalitis, autoimmune subcortical encephalitis, autoimmune or virus‑induced demyelinating lesions of the cerebral hemispheres and mild congenital malformations) have been identified. Conclusions. Encephalopathy in children with ASD associated with GDFC has a complex pathogenesis and is the result of combining a number of immune‑dependent forms of CNS damage in different ways in different patients, leading to a heterogeneous clinic‑radiological phenotype.  


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1645
Author(s):  
Ikjun Lee ◽  
Shuyu Piao ◽  
Seonhee Kim ◽  
Harsha Nagar ◽  
Su-Jeong Choi ◽  
...  

Elevated plasma homocysteine levels can induce vascular endothelial dysfunction; however, the mechanisms regulating homocysteine metabolism in impaired endothelial cells are currently unclear. In this study, we deleted the essential mitoribosomal gene CR6 interacting factor 1 (CRIF1) in human umbilical vein endothelial cells (HUVECs) and mice to induce endothelial cell dysfunction; then, we monitored homocysteine accumulation. We found that CRIF1 downregulation caused significant increases in intracellular and plasma concentrations of homocysteine, which were associated with decreased levels of folate cycle intermediates such as 5-methyltetrahydrofolate (MTHF) and tetrahydrofolate (THF). Moreover, dihydrofolate reductase (DHFR), a key enzyme in folate-mediated metabolism, exhibited impaired activity and decreased protein expression in CRIF1 knockdown endothelial cells. Supplementation with folic acid did not restore DHFR expression levels or MTHF and homocysteine concentrations in endothelial cells with a CRIF1 deletion or DHFR knockdown. However, the overexpression of DHFR in CRIF1 knockdown endothelial cells resulted in decreased accumulation of homocysteine. Taken together, our findings suggest that CRIF1-deleted endothelial cells accumulated more homocysteine, compared with control cells; this was primarily mediated by the disruption of DHFR expression.


2021 ◽  
Vol 17 (3) ◽  
pp. 22-37
Author(s):  
D.V. Maltsev

Relevance. The results of five meta-analyzes of randomized controlled clinical trials indicate an association between genetic deficiency of the folate cycle (GDFC) and autism spectrum disorders (ASD) in children. Autoimmune mechanisms play a special role in the pathogenesis of encephalopathy in children with ASD associated with GDFC. Objective: to study the structure of autoimmune reactions in children with ASD associated with GDFC, according to the accumulated evidence base and to identify associations of laboratory signs of autoimmunity and microorganisms to improve understanding of encephalopathy pathogenesis and diagnostic, monitoring and treatment algorithms. Materials and methods. The medical data of 225 children aged 2 to 9 years with GDFC, who had clinical manifestations of ASD (183 boys and 42 girls) were retrospectively analyzed. The diagnosis of ASD was made by child psychiatrists according to the criteria DSM-IV-TR (Diagnostic and Statistical Manual of mental disorders) and ICD-10 (The International Statistical Classification of Diseases and Related Health Problems) (study group; SG). The control group (CG) included 51 clinically healthy children (37 boys and 14 girls) of similar age and gender distribution who did not suffer from GDFC and ASD. Pathogenic polymorphic variants of folate cycle genes were determined by PCR with restriction (Sinevo, Ukraine). Autoantibodies to autoantigens of CNS subcortical ganglion neurons in blood serum were determined using a Cunningham panel (Moleculera Labs, Inc, USA). Serum autoantibodies to neurons of the mesolimbic system of the brain were identified by ELISA (MDI Limbach Berlin GmbH, Germany). Autoimmunization to myelin was assessed by serum autoantibody titer to basic myelin protein (ELISA) and signs of neutrophil and CD8+ T-lymphocyte sensitization to hemispheric white matter autoantigens (cell-based assay; department of neuroimmunology at the Neurosurgery Institute; Ukraine). Serum autoantibodies to nuclei of connective tissue cells and striated muscle proteins were determined by western blot analysis (Sinevo, Ukraine). To determine the significance of the differences between the indicators in the observation groups, we used the Student's parametric T-test with the confidence probability p and the nonparametric criterion – the number of signs Z according to Urbach Yu.V. The odds ratio (OR) and the 95% confidence interval (95% CI) were used to study the associations between the studied indicators. The study was performed as a fragment of research work commissioned by the Ministry of Health of Ukraine (№ state registration 0121U107940). Research. Positive results of the Cunningham panel occurred in 32%, laboratory signs of autoimmunization to neurons of the mesolimbic system – 36%, myelin of white matter of the hemispheres – 43%, nuclei autoantigens of connective tissue cells – 53%, proteins of striated muscles – 48% of cases among children SG (in general – 68% of cases; p < 0.05; Z < Z0.05). Serological signs of autoimmunization to autoantigens of the subcortical ganglia of the cerebral hemispheres were associated with Streptococcus pyogenes and Borrelia, to neurons of the mesolimbic system – EBV, HHV-6, HHV-7, Toxoplasma and TTV, to CNS myelin – EBV, HHV-6, HHV-7, Borrelia and TTV, to the nuclei of connective tissue cells and striated muscles – EBV, HHV-6, HHV-7, Borrelia and TTV. Conclusions. In children with ASD associated with GDFC laboratory sings of microbial-induced autoimmunity to a number of cerebral and extracerebral autoantigens has been evaluated, which affects the mental and physical health of patients and is a potential target for effective therapeutic interventions.


Author(s):  
А.Н. Плаксина ◽  
А.А. Ошкордина ◽  
О.П. Ковтун ◽  
Н.Н. Кузнецов ◽  
Т.Б. Аболина

Введение. Вспомогательные репродуктивные технологии (ВРТ) проводятся у бесплодных пар, имеющих в том числе факторы тромбогенного риска, которые наследуются их детьми и могут быть причиной формирования инвалидности при развитии сосудистых катастроф. Оценка экономического потенциала ВРТ должна учитывать заболеваемость, инвалидность и смертность детей, зачатых при помощи этих методик. Цель исследования: оценить экономический потенциал ВРТ у ребенка, зачатого при помощи репродуктивных методик, и имеющего инвалидность. Материалы и методы. Проведено наблюдательное исследование за ребенком, зачатым при использовании ВРТ, имеющим наследственную тромбофилию. Оценка экономического потенциала ВРТ проводилась с учетом показателя валового регионального продукта. Результаты. Ребенок на фоне наследственной тромбофилии в генах плазменного (FGB –455 G > A), фибринолитического (PAI-1–675 5G > 4G) и тромбоцитарного (ITGA2 807 C > T) звеньев гемостаза, генах фолатного цикла, гипергомоцистеинемии тяжелой степени имел артериальный тромбоз брюшного отдела аорты, который послужил причиной ампутации стопы и голени, нефрэктомии и формирования инвалидности. Заключение. Учитывая показатель младенческой смертности (4,5‰) и инвалидности (2,9%) в группе детей, зачатых при помощи ВРТ (n = 2206), в регионе отмечается 11,8-кратный возврат затраченных правительством вложений при трудовой занятости в производстве будущего специалиста. Дети, рожденные в семьях, имеющих факторы тромбогенного риска, нуждаются в получении услуг ранней помощи. Introduction. Assisted reproductive technologies (ART) are performed in infertile couples who have, among other things, thrombogenic risk factors that are inherited by their children and can cause disability in the development of vascular catastrophes. The assessment of ART economic potential should take into account the morbidity, disability and mortality of children conceived using these methods. Objectives: to assess ART economic potential in a child conceived with reproductive methods and who has a disability. Patients/Methods. An observational study was conducted on a child conceived using ART and having hereditary thrombophilia. The assessment of ART economic potential was carried out taking into account the indicator of the gross regional product. Results. The child with hereditary thrombophilia in the genes of plasma (FGB –455 G > A), fibrinolytic (PAI-1–675 5G > 4G) and platelet (ITGA2 807 C > T) units of hemostasis, in folate cycle genes, and severe hyperhomocysteinemia had disseminated arterial thrombosis of the abdominal aorta, which caused amputation of the foot and lower leg, nephrectomy and the formation of disability. Conclusions. Taking into account the infant mortality rate (4.5%) and disability (2.9%) in the group of children conceived with ART (n = 2206), the region has an 11.8-fold return on the government’s investment in employment in the production of future specialists. Children born in families with thrombogenic risk factors need early care services.


2021 ◽  
Vol 100 (3) ◽  
pp. 30-37
Author(s):  
Yu.I. Bandazhevskyi ◽  
◽  
N.F. Dubova ◽  

Objective: The aim of the study was to identify interrelations between the state of folate cycle genetic apparatus and blood levels of homocysteine, thyroid and adenohypophysis hormones in the blood among the children from Ivankivskyi and Poliskyi districts, Kyiv region, bordering the Chornobyl exclusion zone (СhEZ). Methods: Immunochemical, genetic, statistical ones. Results: We measured blood levels of homocysteine (Hcy), pituitary thyroid-stimulating hormone (TSH), free triiodothyronine (T3), free thyroxine (T4) in 158 children from Poliskyi district and 178 children from Ivankivskyi district and assessed the state of a genetic system of the folate cycle (FC). The average age of the examined was (15.2 ± 0.9) years old (95% CI 15.0-15.4 years old). Taking into account the FC genotypes, genetic subgroups were formed, they were based on 100% representation of one specific genotype. The laboratory examination was carried out twice: in April and December 2015 (before and after the fires in the ChEZ). It was found out that in the total group of the children, as well as in most of analyzed genetic subgroups, the level of Hcy and thyroid hormones (TG) in the children from Ivankivskyi district was statistically significantly higher than in those from Poliskyi district. At the same time, a direct association between Hcy and TSH was observed in the total group, as well as in most of the genetic subgroups of children from Ivankivskyi district, and this ssociation was absent in the children from Poliskyi district. The blood level of Hcy both in the children from Poliskyi district and in the children from Ivankivskyi district was statistically significantly higher in the subgroup containing only homozygous variants of the T allele of the MTHFR:677 genetic polymorphism in comparison with the subgroups containing neutral C alleles of the same polymorphism. At the same time, there were no differences for TSH, T3 and T4. Сonclusions: The analysis enabled to establish a synchronous reaction of metabolic cycles ensuring the metabolism of Hcy and thyroid hormones in the adolescents, regardless of the FC genotypes. Correlation analysis, as well as the results of statistical analysis, indicate that an increase in the level of Hcy in the blood of children induced the synthesis of TSH and T3. The results show a close relationship between thyroid hormone genesis and the metabolism of methionine sulfur-containing amino acids and Hcy. A forest fire, containing long-lived radioactive elements, is the most likely reason for the increase of Hcy level and, as a result, the hormones of the pituitary-thyroid axis in the blood of the children living in the districts, bordering the ChEZ.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andrea Annibal ◽  
Rebecca George Tharyan ◽  
Maribel Fides Schonewolff ◽  
Hannah Tam ◽  
Christian Latza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document