scholarly journals Technological troubleshooting based on sentence embedding with deep transformers

Author(s):  
Antonio L. Alfeo ◽  
Mario G. C. A. Cimino ◽  
Gigliola Vaglini

AbstractIn nowadays manufacturing, each technical assistance operation is digitally tracked. This results in a huge amount of textual data that can be exploited as a knowledge base to improve these operations. For instance, an ongoing problem can be addressed by retrieving potential solutions among the ones used to cope with similar problems during past operations. To be effective, most of the approaches for semantic textual similarity need to be supported by a structured semantic context (e.g. industry-specific ontology), resulting in high development and management costs. We overcome this limitation with a textual similarity approach featuring three functional modules. The data preparation module provides punctuation and stop-words removal, and word lemmatization. The pre-processed sentences undergo the sentence embedding module, based on Sentence-BERT (Bidirectional Encoder Representations from Transformers) and aimed at transforming the sentences into fixed-length vectors. Their cosine similarity is processed by the scoring module to match the expected similarity between the two original sentences. Finally, this similarity measure is employed to retrieve the most suitable recorded solutions for the ongoing problem. The effectiveness of the proposed approach is tested (i) against a state-of-the-art competitor and two well-known textual similarity approaches, and (ii) with two case studies, i.e. private company technical assistance reports and a benchmark dataset for semantic textual similarity. With respect to the state-of-the-art, the proposed approach results in comparable retrieval performance and significantly lower management cost: 30-min questionnaires are sufficient to obtain the semantic context knowledge to be injected into our textual search engine.

2021 ◽  
Vol 54 (1) ◽  
pp. 1-39
Author(s):  
Zara Nasar ◽  
Syed Waqar Jaffry ◽  
Muhammad Kamran Malik

With the advent of Web 2.0, there exist many online platforms that result in massive textual-data production. With ever-increasing textual data at hand, it is of immense importance to extract information nuggets from this data. One approach towards effective harnessing of this unstructured textual data could be its transformation into structured text. Hence, this study aims to present an overview of approaches that can be applied to extract key insights from textual data in a structured way. For this, Named Entity Recognition and Relation Extraction are being majorly addressed in this review study. The former deals with identification of named entities, and the latter deals with problem of extracting relation between set of entities. This study covers early approaches as well as the developments made up till now using machine learning models. Survey findings conclude that deep-learning-based hybrid and joint models are currently governing the state-of-the-art. It is also observed that annotated benchmark datasets for various textual-data generators such as Twitter and other social forums are not available. This scarcity of dataset has resulted into relatively less progress in these domains. Additionally, the majority of the state-of-the-art techniques are offline and computationally expensive. Last, with increasing focus on deep-learning frameworks, there is need to understand and explain the under-going processes in deep architectures.


2021 ◽  
Vol 10 (2) ◽  
pp. 42-60
Author(s):  
Khadidja Chettah ◽  
Amer Draa

Automatic text summarization has recently become a key instrument for reducing the huge quantity of textual data. In this paper, the authors propose a quantum-inspired genetic algorithm (QGA) for extractive single-document summarization. The QGA is used inside a totally automated system as an optimizer to search for the best combination of sentences to be put in the final summary. The presented approach is compared with 11 reference methods including supervised and unsupervised summarization techniques. They have evaluated the performances of the proposed approach on the DUC 2001 and DUC 2002 datasets using the ROUGE-1 and ROUGE-2 evaluation metrics. The obtained results show that the proposal can compete with other state-of-the-art methods. It is ranked first out of 12, outperforming all other algorithms.


2020 ◽  
Vol 12 (2) ◽  
pp. 21-34
Author(s):  
Mostefai Abdelkader

In recent years, increasing attention is being paid to sentiment analysis on microblogging platforms such as Twitter. Sentiment analysis refers to the task of detecting whether a textual item (e.g., a tweet) contains an opinion about a topic. This paper proposes a probabilistic deep learning approach for sentiments analysis. The deep learning model used is a convolutional neural network (CNN). The main contribution of this approach is a new probabilistic representation of the text to be fed as input to the CNN. This representation is a matrix that stores for each word composing the message the probability that it belongs to a positive class and the probability that it belongs to a negative class. The proposed approach is evaluated on four well-known datasets HCR, OMD, STS-gold, and a dataset provided by the SemEval-2017 Workshop. The results of the experiments show that the proposed approach competes with the state-of-the-art sentiment analyzers and has the potential to detect sentiments from textual data in an effective manner.


Author(s):  
Yutong Feng ◽  
Yifan Feng ◽  
Haoxuan You ◽  
Xibin Zhao ◽  
Yue Gao

Mesh is an important and powerful type of data for 3D shapes and widely studied in the field of computer vision and computer graphics. Regarding the task of 3D shape representation, there have been extensive research efforts concentrating on how to represent 3D shapes well using volumetric grid, multi-view and point cloud. However, there is little effort on using mesh data in recent years, due to the complexity and irregularity of mesh data. In this paper, we propose a mesh neural network, named MeshNet, to learn 3D shape representation from mesh data. In this method, face-unit and feature splitting are introduced, and a general architecture with available and effective blocks are proposed. In this way, MeshNet is able to solve the complexity and irregularity problem of mesh and conduct 3D shape representation well. We have applied the proposed MeshNet method in the applications of 3D shape classification and retrieval. Experimental results and comparisons with the state-of-the-art methods demonstrate that the proposed MeshNet can achieve satisfying 3D shape classification and retrieval performance, which indicates the effectiveness of the proposed method on 3D shape representation.


2020 ◽  
Vol 10 (15) ◽  
pp. 5266 ◽  
Author(s):  
Lianyin Jia ◽  
Chongde Zhang ◽  
Mengjuan Li ◽  
Yinong Chen ◽  
Yong Liu ◽  
...  

Trie is one of the most common data structures for string storage and retrieval. As a fast and efficient implementation of trie, double array (DA) can effectively compress strings to reduce storage spaces. However, this method suffers from the problem of low index construction efficiency. To address this problem, we design a two-level partition (TLP) framework in this paper. We first divide the dataset is into smaller lower-level partitions, and then we merge these partitions into bigger upper-level partitions using a min-heap based greedy merging algorithm (MH-GMerge). TLP has an excellent characteristic of load balancing and can be easily parallelized. We implemented two efficient parallel partitioned DAs based on TLP. Extensive experiments were carried out, and the results showed that the proposed methods can significantly improve the construction efficiency of DA and can achieve a better trade-off between construction and retrieval performance than the existing state-of-the-art methods.


2019 ◽  
Vol 3 (3) ◽  
pp. 58 ◽  
Author(s):  
Tim Haarman ◽  
Bastiaan Zijlema ◽  
Marco Wiering

Keyphrase extraction is an important part of natural language processing (NLP) research, although little research is done in the domain of web pages. The World Wide Web contains billions of pages that are potentially interesting for various NLP tasks, yet it remains largely untouched in scientific research. Current research is often only applied to clean corpora such as abstracts and articles from academic journals or sets of scraped texts from a single domain. However, textual data from web pages differ from normal text documents, as it is structured using HTML elements and often consists of many small fragments. These elements are furthermore used in a highly inconsistent manner and are likely to contain noise. We evaluated the keyphrases extracted by several state-of-the-art extraction methods and found that they did not transfer well to web pages. We therefore propose WebEmbedRank, an adaptation of a recently proposed extraction method that can make use of structural information in web pages in a robust manner. We compared this novel method to other baselines and state-of-the-art methods using a manually annotated dataset and found that WebEmbedRank achieved significant improvements over existing extraction methods on web pages.


2019 ◽  
Vol 9 (11) ◽  
pp. 2347 ◽  
Author(s):  
Hannah Kim ◽  
Young-Seob Jeong

As the number of textual data is exponentially increasing, it becomes more important to develop models to analyze the text data automatically. The texts may contain various labels such as gender, age, country, sentiment, and so forth. Using such labels may bring benefits to some industrial fields, so many studies of text classification have appeared. Recently, the Convolutional Neural Network (CNN) has been adopted for the task of text classification and has shown quite successful results. In this paper, we propose convolutional neural networks for the task of sentiment classification. Through experiments with three well-known datasets, we show that employing consecutive convolutional layers is effective for relatively longer texts, and our networks are better than other state-of-the-art deep learning models.


Author(s):  
Qianren Mao ◽  
Jianxin Li ◽  
Senzhang Wang ◽  
Yuanning Zhang ◽  
Hao Peng ◽  
...  

Aspect-based sentiment classification aims to identify sentiment polarity expressed towards a given opinion target in a sentence. The sentiment polarity of the target is not only highly determined by sentiment semantic context but also correlated with the concerned opinion target. Existing works cannot effectively capture and store the inter-dependence between the opinion target and its context. To solve this issue, we propose a novel model of Attentive Neural Turing Machines (ANTM). Via interactive read-write operations between an external memory storage and a recurrent controller, ANTM can learn the dependable correlation of the opinion target to context and concentrate on crucial sentiment information. Specifically, ANTM separates the information of storage and computation, which extends the capabilities of the controller to learn and store sequential features. The read and write operations enable ANTM to adaptively keep track of the interactive attention history between memory content and controller state. Moreover, we append target entity embeddings into both input and output of the controller in order to augment the integration of target information. We evaluate our model on SemEval2014 dataset which contains reviews of Laptop and Restaurant domains and Twitter review dataset. Experimental results verify that our model achieves state-of-the-art performance on aspect-based sentiment classification.


Author(s):  
Harshala Bhoir ◽  
K. Jayamalini

Visual sentiment analysis is the way to automatically recognize positive and negative emotions from images, videos, graphics, stickers etc. To estimate the polarity of the sentiment evoked by images in terms of positive or negative sentiment, most of the state-of-the-art works exploit the text associated to a social post provided by the user. However, such textual data is typically noisy due to the subjectivity of the user which usually includes text useful to maximize the diffusion of the social post. Proposed system will extract and employ an Objective Text description of images automatically extracted from the visual content rather than the classic Subjective Text provided by the user. The proposed System will extract three views visual view, subjective text view and objective text view of social media image and will give sentiment polarity positive, negative or neutral based on hypothesis table.


Author(s):  
Chaoyou Fu ◽  
Liangchen Song ◽  
Xiang Wu ◽  
Guoli Wang ◽  
Ran He

Deep supervised hashing has become an active topic in information retrieval. It generates hashing bits by the output neurons of a deep hashing network. During binary discretization, there often exists much redundancy between hashing bits that degenerates retrieval performance in terms of both storage and accuracy. This paper proposes a simple yet effective Neurons Merging Layer (NMLayer) for deep supervised hashing. A graph is constructed to represent the redundancy relationship between hashing bits that is used to guide the learning of a hashing network. Specifically, it is dynamically learned by a novel mechanism defined in our active and frozen phases. According to the learned relationship, the NMLayer merges the redundant neurons together to balance the importance of each output neuron. Moreover, multiple NMLayers are progressively trained for a deep hashing network to learn a more compact hashing code from a long redundant code. Extensive experiments on four datasets demonstrate that our proposed method outperforms state-of-the-art hashing methods.


Sign in / Sign up

Export Citation Format

Share Document