Experimental Comparison Research on Active Vibration Control for Flexible Piezoelectric Manipulator Using Fuzzy Controller

2009 ◽  
Vol 59 (1) ◽  
pp. 31-56 ◽  
Author(s):  
Jing-jun Wei ◽  
Zhi-cheng Qiu ◽  
Jian-da Han ◽  
Yue-chao Wang
2021 ◽  
Vol 35 ◽  
pp. 281-297
Author(s):  
R. Kleinwort ◽  
J. Herb ◽  
P. Kapfinger ◽  
M. Sellemond ◽  
C. Weiss ◽  
...  

2019 ◽  
Vol 30 (14) ◽  
pp. 2065-2078 ◽  
Author(s):  
Jonas Maruani ◽  
Isabelle Bruant ◽  
Frédéric Pablo ◽  
Laurent Gallimard

In this article, the active vibration control of a smart structure made out of a single functionally graded piezoelectric material layer, equipped with a network of discrete electrodes, is studied. The material properties vary continuously across the direction of thickness, so that top and bottom surfaces consist of pure PZT4 and the mid surface is composed of pure aluminium. The percolation phenomenon is taken into account. A functionally graded piezoelectric material plate finite element based on the first-order shear deformation theory hypothesis and layer-wise approximation for electric potential is implemented. An optimization procedure is considered to define the relevant electrodes for actuators and sensors, based on controllable and observable criteria. An adaptative fuzzy controller system is used, activating with relevance the actuators according to the most excited eigenmodes. Simulations show the effectiveness of this kind of concept.


Author(s):  
Romain Boulandet ◽  
Anik Pelletier ◽  
Philippe Micheau ◽  
Alain Berry

The paper addresses the practical implementation of active vibration control using self-sensing actuators, intending to equip smart structures. The control objective is to reduce the structural vibration of a simply-supported plate subject to time-harmonic excitation. The key challenge is to use a self-sensing actuator instead of a sensor-actuator pair to reject the primary disturbance at the control point. In this study, two types of self-sensing actuators designed from a PZT patch and an electrodynamic inertial exciter are discussed, and their overall performance is compared in terms of reduction of flexural energy and power consumption. Both technologies have proven to be efficient in achieving a time-harmonic vibration control and may be used alternately, depending on the application at hand.


Author(s):  
Hua Li ◽  
Kaiming Hu

Cylindrical shells are widely used engineering structures, such as pipelines, tubes, submarine shells, etc. The active vibration control of these structures are important methods for ensuring their performance. In this paper, a fuzzy logic controller was proposed for the active vibration control of cylindrical shells. Piezoelectric actuators were laminated on the shell surface for the generation of control force. Then, the mathematical model of the model control force were given based the inverse piezoelectric effects and modal summation method. The transfer equation of the controlled system was derived from the modal equation. The fuzzy logic controller was then designed, in which the centroid method was used for defuzification. The proposed controller was then implemented in Matlab/Simulink environment, followed by case studies to evaluate its performance. Numerical results shown the effectiveness of fuzzy logic controller on active vibration of smart cylindrical shells. For all evaluated cases, more than 33% of amplitude reduction were achieved.


Author(s):  
Manu Sharma ◽  
S. P. Singh ◽  
B. L. Sachdeva

This paper presents fuzzy logic based velocity feedback control for active vibration control of beams. The controller is first developed for a single degree of freedom spring mass system. Rule base consisting of three simple rules based on velocity is used. It is found theoretically as well as experimentally, that for the same settling time maximum applied force required by fuzzy logic controller is much less than that required by direct negative velocity feedback control. The fuzzy controller so developed is then applied for active vibration control of beams. The controller is implemented experimentally on a test beam and the results are found satisfactory. The test system consists of a cantilevered beam with piezoelectric sensor and actuator patches mounted in collocated fashion. The fuzzy logic controller is based on modal velocity of the beam. Modal velocity of the beam acts as an input to the fuzzy controller and actuation force is output from the inference engine. The issues related to design of fuzzy logic controller based on velocity are discussed.


1987 ◽  
Author(s):  
ZORAN MARTINOVIC ◽  
RAPHAEL HAFTKA ◽  
WILLIAM HALLAUER, JR. ◽  
GEORGE SCHAMEL, II

Sign in / Sign up

Export Citation Format

Share Document