Nanoscale Pseudoelasticity of Single-crystal Cu–Al–Ni shape-memory Alloy Induced by Cyclic Nanoindentation

2006 ◽  
Vol 41 (15) ◽  
pp. 5021-5024 ◽  
Author(s):  
H.-S. Zhang ◽  
K. Komvopoulos
1994 ◽  
Author(s):  
Pyoung-Kil Yoo ◽  
G.-S. Ieen ◽  
Hyo-Yeol Park ◽  
Seok-Kil Han ◽  
Min-Su Jang

2016 ◽  
Vol 106 ◽  
pp. 333-343 ◽  
Author(s):  
L. Patriarca ◽  
H. Sehitoglu ◽  
E. Yu. Panchenko ◽  
Y.I. Chumlyakov

2018 ◽  
Vol 144 ◽  
pp. 748-757 ◽  
Author(s):  
Harshad M. Paranjape ◽  
Partha P. Paul ◽  
Behnam Amin-Ahmadi ◽  
Hemant Sharma ◽  
Darren Dale ◽  
...  

2007 ◽  
Vol 22 (4) ◽  
pp. 994-1003 ◽  
Author(s):  
H.-S. Zhang ◽  
K. Komvopoulos

Single-crystal rods of Cu–Al–Ni shape-memory alloy fabricated from a molten pool of 82 wt% Cu, 14 wt% Al, and 4 wt% Ni by the Czochralski method were first heated to ∼870 °C and then quenched to obtain austenitic microstructures. Various microanalysis techniques were used to determine the chemical composition, microstructure, and phase-transformation temperatures of the produced alloy. Cyclic tensile tests with in situ temperature control demonstrated the occurrence of pseudoelastic deformation at elevated and close to phase-transformation temperatures and provided insight into the temperature dependence of the phase-transformation stress, damping characteristics, and cyclic straining of single-crystal Cu–Al–Ni alloy. The stress hysteresis observed in the pseudoelastic deformation cycles decreased at elevated temperatures. The stress response at different temperatures is associated with the formation, growth, and coalescence of martensite variants. Stress-induced phase-transformation mechanisms, coalescence of twin variants, and energy dissipation by pseudoelastic deformation are discussed in the context of experimental findings. The results illustrate the potential of single-crystal Cu–Al–Ni as a structural material for dynamic microsystems and temperature sensors.


2007 ◽  
Vol 130 ◽  
pp. 127-134
Author(s):  
Concepcio Seguí ◽  
Jaume Pons ◽  
Eduard Cesari

The present work analyses the influence of austenite ordering on a single crystal Ni-Mn- Ga alloy which displays, on cooling, a sequence of martensitic (MT) and intermartensitic (IMT) transformations. The MT and IMT show distinct behaviour after ageing in austenite: while the MT temperatures are not affected by the performed heat treatments, the IMT shifts toward lower temperatures after quenching from increasing temperatures, progressive recovery occurring upon ageing in parent phase. Such evolution can be related to changes in the L21 order degree, in the sense that ordering favours the occurrence of the intermartensitic transformation, while it does not affect noticeably the forward and reverse martensitic transformation temperatures. The closeness of the free energies of the different martensite structures allows to explain this behaviour.


Author(s):  
Steve Trigwell ◽  
Ganesh Kumara K. ◽  
Abhijit Bhattacharyya ◽  
Muhammed A. Qidwai

Preliminary investigations on the constitutive response of a Cu-13.3%Al-4%Ni (wt%) shape memory alloy single crystal with stress-free transformation temperatures around 100 to 150°C are reported. Room temperature stress cycling tests were carried out at very low deformation rates. Reproducible stress/strain curves of up to 9% strain due to detwinning (martensitematensite phase transformations) with no plastic deformation were obtained. The data also indicated that a period of stress cycling is required to stabilize the material before reproducible stress-strain curves are obtained due to martensite reorientation.


Sign in / Sign up

Export Citation Format

Share Document