Thermomechanical effects on phase transformations in single-crystal Cu–Al–Ni shape-memory alloy

2007 ◽  
Vol 22 (4) ◽  
pp. 994-1003 ◽  
Author(s):  
H.-S. Zhang ◽  
K. Komvopoulos

Single-crystal rods of Cu–Al–Ni shape-memory alloy fabricated from a molten pool of 82 wt% Cu, 14 wt% Al, and 4 wt% Ni by the Czochralski method were first heated to ∼870 °C and then quenched to obtain austenitic microstructures. Various microanalysis techniques were used to determine the chemical composition, microstructure, and phase-transformation temperatures of the produced alloy. Cyclic tensile tests with in situ temperature control demonstrated the occurrence of pseudoelastic deformation at elevated and close to phase-transformation temperatures and provided insight into the temperature dependence of the phase-transformation stress, damping characteristics, and cyclic straining of single-crystal Cu–Al–Ni alloy. The stress hysteresis observed in the pseudoelastic deformation cycles decreased at elevated temperatures. The stress response at different temperatures is associated with the formation, growth, and coalescence of martensite variants. Stress-induced phase-transformation mechanisms, coalescence of twin variants, and energy dissipation by pseudoelastic deformation are discussed in the context of experimental findings. The results illustrate the potential of single-crystal Cu–Al–Ni as a structural material for dynamic microsystems and temperature sensors.

2007 ◽  
Vol 130 ◽  
pp. 127-134
Author(s):  
Concepcio Seguí ◽  
Jaume Pons ◽  
Eduard Cesari

The present work analyses the influence of austenite ordering on a single crystal Ni-Mn- Ga alloy which displays, on cooling, a sequence of martensitic (MT) and intermartensitic (IMT) transformations. The MT and IMT show distinct behaviour after ageing in austenite: while the MT temperatures are not affected by the performed heat treatments, the IMT shifts toward lower temperatures after quenching from increasing temperatures, progressive recovery occurring upon ageing in parent phase. Such evolution can be related to changes in the L21 order degree, in the sense that ordering favours the occurrence of the intermartensitic transformation, while it does not affect noticeably the forward and reverse martensitic transformation temperatures. The closeness of the free energies of the different martensite structures allows to explain this behaviour.


2001 ◽  
Author(s):  
Rong Xin Wang ◽  
Yitshak Zohar ◽  
Man Wong

Abstract The micro-structures and the phase transformation temperatures of sputtered titanium-nickel (TiNi) thin films, both free-standing and attached on different underlying multi-layer substrates have been studied. Differences in the micro-structures, such as the lattice constants and the relative concentrations of TiNi, Ti2Ni and TiNi3 phases, were observed (1) among the free-standing and the attached films, (2) among the films attached on different underlying multi-layers and (3) among films with different relative orders of aging and release. Not surprisingly, the corresponding phase transformation temperatures are also different. It is proposed that both substrate- and process-induced stress significantly affect the micro-structures, hence the phase transformation characteristics, of the resulting shape-memory alloy thin films.


2011 ◽  
Vol 179-180 ◽  
pp. 455-458
Author(s):  
Bo Zhou ◽  
Zhen Qing Wang ◽  
Yan Ju Liu ◽  
Jin Song Leng

DSC test is carried out to determine the phase transformation temperatures of a NiTi SMA, which include martensitic starting temperature, martensitic finishing temperature, austenitic starting temperature and austenitic finishing temperature. The mechanical behaviors of shape memory alloy (SMA) torsion rod are investigated by using Zhou’s shear constitutive equation of SMA and the theorem of circular shaft in mechanics of materials. A critical torque equation is developed to describe the relationship between the martensitic phase transformation critical torque of SMA torsion rod and temperature.


2013 ◽  
Vol 738-739 ◽  
pp. 82-86 ◽  
Author(s):  
Thomas Niendorf ◽  
Jayaram Dadda ◽  
Jan Lackmann ◽  
James A. Monroe ◽  
Ibrahim Karaman ◽  
...  

This paper reports on the tension-compression asymmetry of [001]-oriented Co49Ni21Ga30 single crystals at elevated temperatures. Maximum strains of -4.8 % and 8.6 % in compression and tension, respectively, were found. A linear Clausius-Clapeyron relationship was observed for both stress-states where the smaller slope in tension resulted in a significant increase of the phase transformation temperatures with stress, which reached 180 °C under a constant stress level of 150 MPa. In addition, the material demonstrated a large pseudoelastic temperature range of about 300 °C under both stress state conditions. The results in this study unequivocally indicate the potential of these alloys for applications where elevated temperatures and stress levels prevail.


2015 ◽  
Vol 1120-1121 ◽  
pp. 958-961
Author(s):  
Tadeu Castro da Silva ◽  
Daniel Monteiro Rosa ◽  
Edson Paulo da Silva

When submitted to annealing thermal treatments Shape Memory Alloys have their phase transformation temperatures effected. The aim of the present work is to investigate the effects of cooling time in the phase transformation temperatures of Ni55Ti45in w.t. % alloy annealed at 350°C. Samples of this alloy were maintained at 350°C for one hour and then cooled in the same furnace for 10 minutes, 1 hour and 24 hours. The phase transformation temperatures were measured by means of Differential Scanning Calorimetry (DSC) at cooling and heating rates of 20°C/min. The results show that the annealing at 350°C changed the phase transformation up to 54%. For 10 minutes cooling time the Mftemperature increase from 15,65°C to 24,1°C. For the others cooling times the phase transformation temperature did not change significantly. Therefore, the cooling time for the annealing at 350°C did not effect the phase transformation temperatures of the Ni45Ti55in wt % shape memory alloy.


2010 ◽  
Vol 442 ◽  
pp. 301-308
Author(s):  
S. Rani ◽  
M.S. Awan ◽  
I.N. Qureshi ◽  
F. Yasmin ◽  
M. Farooque

The functional fatigue behavior of Ti50Ni30Cu20 (at. %) shape memory alloy was investigated after subjecting to cold working and heat-treatment. Copper addition modified the phase transformation behavior with the introduction of B19-phase in the binary NiTi alloy. It was observed that aging after annealing and thermal cycling (-60 to 100)°C significantly effect the transformation temperatures. Observations in optical microscope and scanning electron microscope reveal inhomogeneity in the composition in the form of coarse Cu+Ti-rich precipitates. Investigations under transmission electron microscope showed growth of internally twined martensitic plates in solution treated sample. The phase transformation temperatures were determined with differential scanning calorimeter. The transformation temperatures were shifted towards lower side. Dislocations introduced during cold working and fine precipitation after aging, may be responsible for this change in the transformation characteristics of the material.


Sign in / Sign up

Export Citation Format

Share Document