Structural and chemical properties of nanocrystalline La0.5Sr0.5CoO3−δ layers on yttria-stabilized zirconia analyzed by transmission electron microscopy

2008 ◽  
Vol 43 (9) ◽  
pp. 3135-3143 ◽  
Author(s):  
L. Dieterle ◽  
D. Bach ◽  
R. Schneider ◽  
H. Störmer ◽  
D. Gerthsen ◽  
...  
2013 ◽  
Vol 591 ◽  
pp. 245-248 ◽  
Author(s):  
Jin Feng Xia ◽  
Hong Qiang Nian ◽  
Tao Feng ◽  
Hai Fang Xu ◽  
Dan Yu Jiang

In some applications such as automotive oxygen sensor, 5mol% Y2O3stabilized zirconia (5YSZ) is generally used because it has both excellent ionic conductivity and mechanical properties. The automotive oxygen sensor would experience a cyclic change from high temperature (engine running) environment to the low temperature damp environment (in the tail pipe when vehicle stops). The conductivity change with coupled conditions of thermal cycle and dump environment in the 5mol%Y2O3ZrO2(5YSZ) system was examined by XRD,Impedance spectroscopy and transmission electron microscopy (SEM) in this paper.


1996 ◽  
Vol 441 ◽  
Author(s):  
J. Marien ◽  
T. Wagner ◽  
M. Rühle

AbstractThin Nb films were grown by MBE in a UHV chamber at two different temperatures (50°C and 950°C) on the (110) surface of TiO2 (rutile).At a growth temperature of 50°C, reflection high energy electron diffraction (RHEED) revealed epitaxial growth of Nb on rutile: (110)[001] TiO2 ¦¦ (100)[001] Nb. In addition, investigations with Auger electron spectroscopy (AES) revealed that a chemical reaction took place between the Nb overlayer and the TiO2 substrate at the initial growth stage. A 2 nm thick reaction layer at the Nb/TiO2 interface has been identified by means of conventional transmission electron microscopy (CTEM) and high-resolution transmission electron microscopy (HRTEM).At a substrate temperature of 950°C, during growth, the Nb film was oxidized completely, and NbO2 grew epitaxially on TiO2. The structure and the chemical composition of the overlayers have been investigated by RHEED, AES, CTEM and HRTEM. Furthermore, it was determined that the reaction of Nb with TiO2 is governed by the defect structure of the TiO2 and the relative oxygen affinities of Nb and TiO2.


2014 ◽  
Vol 47 (1) ◽  
pp. 443-448 ◽  
Author(s):  
Yan-Ling Hu ◽  
Eric Rind ◽  
James S. Speck

In2O3is important because it has been widely used as a transparent contact material and an active gas sensor material. To understand and utilize its intrinsic physics as a semiconductor, it is necessary to have In2O3with a high material quality. In this article, single-crystalline (001)-oriented In2O3thin films were grown on yttria-stabilized zirconia (001) substrate, and a group theory analysis and transmission electron microscopy (TEM) experiments were conducted to investigate the defects within the In2O3film. Owing to the reduced symmetry of the bixbyite structure (space group Ia{\overline 3}) in comparison with the fluorite template (space group Fm {\overline 3}m), the formation of antiphase domains and 90° rotation domains in the In2O3thin films is anticipated. This prediction is confirmed experimentally by TEM and high-angle annular dark-field scanning transmission electron microscopy images. The size of the enclosed domains ranges from 50 to 300 nm, and the major domain boundaries are along the (110), (1{\overline 1}0), (010) and (100) planes. The rotation domains are related by a fourfold rotation operation along the 〈001〉 directions, which will cause the permutation of the axes of the bixbyite structure.


2000 ◽  
Vol 645 ◽  
Author(s):  
Judith C. Yang ◽  
Noel T. Nuhfer

ABSTRACTWe examined an as-processed yttria-stabilized zirconia (YSZ) on platinum aluminide bond coat (BC), produced by electron beam physical vapor deposition, with transmission electron microscopy, including energy dispersive X-ray spectroscopy and hollow-cone diffraction. Columnar α-Al2O3 grains (∼100nm) formed at the interface between the BC and YSZ. A thin intermix (∼50nm) region was observed between the α-Al2O3 and YSZ. Hollow cone diffraction showed that the α-Al2O3 grains and the small-grained (∼10nm) YSZ near the α-Al2O3 are randomly oriented, without preferential texturing. No evidence of spinel formation was noted.


2003 ◽  
Vol 18 (1) ◽  
pp. 195-200 ◽  
Author(s):  
David E. Ruddell ◽  
Brian R. Stoner ◽  
Jeffrey Y. Thompson

Transmission electron microscopy (TEM) was used to investigate the structural properties of sputter-deposited yttria-stabilized zirconia (YSZ) thin films. YSZ films were deposited over a range of temperatures and background oxygen levels. Additionally, a multilayered structure was produced by cyclic application of a substrate bias. Plan-view TEM showed that temperature and oxygen levels did not have a significant effect on grain size but did alter the phases present in the thin films. Cross-sectional TEM showed the development of texture in the multilayer film, both within the individual layers and in the entire film.


Author(s):  
Margaret R. Barlin

Females of the wasp Tetrastichus hagenowii (Hymenoptera: Chalcidoidea) lay their eggs in cockroach egg cases, the young hatch and feed on the cockroach eggs. Prior to egg deposition the parasites follow a complex behavioral sequence, including tapping their antennal tips on the eggcase, thus enabling them to detect various mechanical and chemical properties of the cockroach egg case and determine its suitability for oviposition (unpublished data).Sensory sensilla occur along the entire length of the female antenna (Fig. 1). Two of the more prominent sensilla were studied by scanning and transmission electron microscopy, these are both sensilla placodea (PI and P2 in Figs. 1 and 2) which are chemoreceptors (1). Numerous hair-like sensilla (H) and a few bulb-like sensilla (B) are also present (Figs. 1 and 2). Sensilla placodea occur frequently on hymenopteran antennae (1), but the occurrence of two types on the same insect has not been reported previously.


Sign in / Sign up

Export Citation Format

Share Document