Spark plasma sintering of a p-type Si1−x Ge x alloy: identification of the densification mechanism by isothermal and anisothermal methods

2012 ◽  
Vol 47 (10) ◽  
pp. 4313-4325 ◽  
Author(s):  
Guillaume Bernard-Granger ◽  
Amandine Néri ◽  
Christelle Navone ◽  
Mathieu Soulier ◽  
Julia Simon ◽  
...  
2007 ◽  
Vol 352 ◽  
pp. 227-231 ◽  
Author(s):  
Qiang Shen ◽  
Z.D. Wei ◽  
Mei Juan Li ◽  
Lian Meng Zhang

AlN ceramics doped with yttrium oxide (Y2O3) as the sintering additive were prepared via the spark plasma sintering (SPS) technique. The sintering behaviors and densification mechanism were mainly investigated. The results showed that Y2O3 addition could promote the AlN densification. Y2O3-doped AlN samples could be densified at low temperatures of 1600-1700oC in 20-25 minutes. The AlN samples were characterized with homogeneous microstructure. The Y-Al-O compounds were created on the grain boundaries due to the reactions between Y2O3 and Al2O3 on AlN particle surface. With increasing the sintering temperature, AlN grains grew up, and the location of grain boundaries as well as the phase compositions changed. The Y/Al ratio in the aluminates increased, from Y3Al5O12 to YAlO3 and to Y4Al2O9. High-density, the growth of AlN grains and the homogenous dispersion of boundary phase were helpful to improve the thermal conductivity of AlN ceramics. The thermal conductivity of 122Wm-1K-1 for the 4.0 mass%Y2O3-doped AlN sample was reached.


2015 ◽  
Vol 66 ◽  
pp. 1-7 ◽  
Author(s):  
L.H. Liu ◽  
C. Yang ◽  
Y.G. Yao ◽  
F. Wang ◽  
W.W. Zhang ◽  
...  

2006 ◽  
Vol 415 (1-2) ◽  
pp. 251-256 ◽  
Author(s):  
Satoru Furuyama ◽  
Tsutomu Iida ◽  
Shinsuke Matsui ◽  
Masayasu Akasaka ◽  
Keishi Nishio ◽  
...  

2003 ◽  
Vol 793 ◽  
Author(s):  
Lidong Chen ◽  
Jun Jiang ◽  
Xun Shi

ABSTRACTThermoelectric performance of polycrystalline materials is greatly influenced by their microstructures including grain sizes, grain boundaries, grain orientations in anisotropic compounds, etc. The material microstructures are sensitive to the preparation processes and the starting materials. In the present study, n-type and p-type Bi2Te3-based sintered materials with highly preferred grain orientations have been fabricated through a spark plasma sintering (SPS) technique, by controlling the particle sizes of the starting powder and other sintering process parameters. The obtained textured Bi2Te3-based materials show a high mechanical strength as 80MPa in bending strength, which is 7 to 8 times as that of the melted ingot materials, and a significant anisotropy in thermoelectric transport properties. The optimal figure of merit (ZT) of the sintered materials in the direction perpendicular to the pressing direction (with c-axis preferred orientation) is comparable to that of the zone-melted ingots in the same crystallographic orientation.


Sign in / Sign up

Export Citation Format

Share Document