Spark plasma sintering of Al–Cr–Fe quasicrystals: Electric field effects and densification mechanism

2016 ◽  
Vol 114 ◽  
pp. 88-92 ◽  
Author(s):  
R.T. Li ◽  
Z.L. Dong ◽  
K.A. Khor
2007 ◽  
Vol 352 ◽  
pp. 227-231 ◽  
Author(s):  
Qiang Shen ◽  
Z.D. Wei ◽  
Mei Juan Li ◽  
Lian Meng Zhang

AlN ceramics doped with yttrium oxide (Y2O3) as the sintering additive were prepared via the spark plasma sintering (SPS) technique. The sintering behaviors and densification mechanism were mainly investigated. The results showed that Y2O3 addition could promote the AlN densification. Y2O3-doped AlN samples could be densified at low temperatures of 1600-1700oC in 20-25 minutes. The AlN samples were characterized with homogeneous microstructure. The Y-Al-O compounds were created on the grain boundaries due to the reactions between Y2O3 and Al2O3 on AlN particle surface. With increasing the sintering temperature, AlN grains grew up, and the location of grain boundaries as well as the phase compositions changed. The Y/Al ratio in the aluminates increased, from Y3Al5O12 to YAlO3 and to Y4Al2O9. High-density, the growth of AlN grains and the homogenous dispersion of boundary phase were helpful to improve the thermal conductivity of AlN ceramics. The thermal conductivity of 122Wm-1K-1 for the 4.0 mass%Y2O3-doped AlN sample was reached.


2015 ◽  
Vol 66 ◽  
pp. 1-7 ◽  
Author(s):  
L.H. Liu ◽  
C. Yang ◽  
Y.G. Yao ◽  
F. Wang ◽  
W.W. Zhang ◽  
...  

2012 ◽  
Vol 47 (10) ◽  
pp. 4313-4325 ◽  
Author(s):  
Guillaume Bernard-Granger ◽  
Amandine Néri ◽  
Christelle Navone ◽  
Mathieu Soulier ◽  
Julia Simon ◽  
...  

2021 ◽  
Author(s):  
Yao Liu

Abstract The densification mechanism of doped CeO with Si3N4 powder during Spark Plasma Sintering (SPS) was investigated under temperatures ranging from 1500 to 1750 °C at soaking pressures of 30, 40, 50 MPa. Results showed that the relative density of Si3N4 ceramics sintered at 1650 °C and 30 MPa was 97.9%. A creep model was employed to determine the mechanism, which can be interpreted on the basis of the stress exponent (n). The results showed that the mechanism was controlled by liquid phase sintering at low effective stress regime (n=1).


Sign in / Sign up

Export Citation Format

Share Document