The use of MACE technique on amorphous silicon-rich silicon nitride thin films for the formation of spherical silica nanoparticles

2019 ◽  
Vol 54 (23) ◽  
pp. 14296-14308
Author(s):  
A. L. Muñoz-Rosas ◽  
A. Rodríguez-Gómez ◽  
J. C. Alonso-Huitrón ◽  
N. Qureshi
2009 ◽  
Vol 289-292 ◽  
pp. 697-703 ◽  
Author(s):  
Erwin Hüger ◽  
Jochen Stahn ◽  
Udo Geckle ◽  
Michael Bruns ◽  
Harald Schmidt

Studies of self-diffusion in solids are presented, which are based on neutron reflectometry. For the application of this technique the samples under investigation are prepared in form of isotope heterostructures. These are nanometer sized thin films, which are chemically completely homogenous, but isotope modulated. Using this method, diffusion lengths in the order of 1 nm and below can be detected which allows to determine ultra low diffusivities in the order of 10-25 m2/s. For the model system amorphous silicon nitride we demonstrate how the structure of the isotope hetrostructures (triple layers or multilayers) influences the efficiency of diffusivity determination.


2011 ◽  
Vol 131 (7) ◽  
pp. 1305-1311 ◽  
Author(s):  
Mustafa Anutgan ◽  
Tamila (Aliyeva) Anutgan ◽  
Ismail Atilgan ◽  
Bayram Katircioglu

2001 ◽  
Vol 7 (S2) ◽  
pp. 1228-1229
Author(s):  
Lew Rabenberg ◽  
J. P. Zhou ◽  
Kil-Soo Ko ◽  
Rita Johnson

Thin films of amorphous silicon oxide and silicon nitride are routinely used as gate dielectrics in silicon-based microelectronic devices. It is valuable to be able to image them and measure their thicknesses quickly and accurately. This brief note describes conditions that can be used to obtain accurate and reproducible TEM images of oxide-nitride-oxide (ONO) thin films.Obtaining adequate contrast differences between oxide and nitride is not trivial because they have the same average atomic number, and both phases are amorphous. As stoichiometric compounds, both SiO2 and Si3N4 would have average atomic numbers equal to 10. For SiO2, (14+2(8))/3=10, and for Si3N4, (3(14)+4(7))/7=10. Thus, the atomic number contrast between these two is weak or nonexistent. Similarly, the amorphous character prevents the use of conventional diffraction contrast techniques.However, the density of Si3N4 (3.2 g/cm3) is considerably greater than the density of SiO2 (2.6 g/cm3), reflecting the higher average coordination of N compared with O.


2021 ◽  
Vol 323 ◽  
pp. 48-55
Author(s):  
Jia Xin Sun ◽  
Bing Qing Zhou ◽  
Xin Gu

Silicon-rich silicon nitride thin films are prepared on P-type monocrystalline silicon wafer (100) and glass substrate by plasma chemical vapor deposition with reaction gas sources SiH4 and NH3. The deposited samples are thermally annealed from 600°C to 1000°C in an atmosphere furnace filled with high purity nitrogen. The annealing time is 60 minutes. Fourier transform infrared spectroscopy (FTIR) is carried out to investigate the bonding configurations in the films. The results show that the Si-H bond and N-H bond decrease with the increase of annealing temperature, and completely disappear at the annealing temperature of 900°C. But the Si-N bond is enhanced with the increase of annealing temperature, and the blue shift occurs, then Si content in the film increases. The Raman Spectra show that the amorphous Si Raman peak appears at 480 cm-1 in the film at 700°C. The Raman spectra of the films annealed at 1000 °C is fitted with two peaks, and a peak at 497 cm -1 is found, which indicated that the Si phase in the films changed from amorphous to crystalline with the increase of annealing temperature. The experiment also analyses the luminescence properties of the samples through PL spectrum, and it is found that there are five luminescence peaks in each sample under different annealing temperature. Based on the analysis of Raman spectrum and FTIR spectrum, the PL peak of amorphous silicon quantum dots appears at the wavelength range of 525-555nm, and the other four PL peaks are all from the defect state luminescence in the thin films, and the amorphous silicon quantum dot size is calculated according to the formula.


1990 ◽  
Vol 189 (1) ◽  
pp. 111-123 ◽  
Author(s):  
J.L. Jauberteau ◽  
D. Conte ◽  
M.I. Baraton ◽  
P. Quintard ◽  
J. Aubreton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document