Possibility of an integrated transmission electron microscope: enabling complex in-situ experiments

2021 ◽  
Vol 56 (9) ◽  
pp. 5309-5320
Author(s):  
Khalid Hattar ◽  
Katherine L. Jungjohann

Abstract Multimodal in-situ experiments are the wave of the future, as this approach will permit multispectral data collection and analysis during real-time nanoscale observation. In contrast, the evolution of technique development in the electron microscopy field has generally trended toward specialization and subsequent bifurcation into more and more niche instruments, creating a challenge for reintegration and backward compatibility for in-situ experiments on state-of-the-art microscopes. We do not believe this to be a requirement in the field; therefore, we propose an adaptive instrument that is designed to allow nearly simultaneous collection of data from aberration-corrected transmission electron microscopy (TEM), probe-corrected scanning transmission electron microscopy, ultrafast TEM, and dynamic TEM with a flexible in-situ testing chamber, where the entire instrument can be modified as future technologies are developed. The value would be to obtain a holistic understanding of the underlying physics and chemistry of the process-structure–property relationships in materials exposed to controlled extreme environments. Such a tool would permit the ability to explore, in-situ, the active reaction mechanisms in a controlled manner emulating those of real-world applications with nanometer and nanosecond resolution. If such a powerful tool is developed, it has the potential to revolutionize our materials understanding of nanoscale mechanisms and transients. Graphical Abstract

2008 ◽  
Vol 14 (S2) ◽  
pp. 436-437 ◽  
Author(s):  
G Yang ◽  
Y Zhao ◽  
K Sader ◽  
A Bleloch ◽  
RF Klie

Extended abstract of a paper presented at Microscopy and Microanalysis 2008 in Albuquerque, New Mexico, USA, August 3 – August 7, 2008


2020 ◽  
Vol 26 (1) ◽  
pp. 3-17 ◽  
Author(s):  
Fabrizio Gaulandris ◽  
Søren B. Simonsen ◽  
Jakob B. Wagner ◽  
Kristian Mølhave ◽  
Shun Muto ◽  
...  

AbstractOne of the biggest challenges for in situ heating transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) is the ability to measure the local temperature of the specimen accurately. Despite technological improvements in the construction of TEM/STEM heating holders, the problem of being able to measure the real sample temperature is still the subject of considerable discussion. In this study, we review the present literature on methodologies for temperature calibration. We analyze calibration methods that require the use of a thermometric material in addition to the specimen under study, as well as methods that can be performed directly on the specimen of interest without the need for a previous calibration. Finally, an overview of the most important characteristics of all the treated techniques, including temperature ranges and uncertainties, is provided in order to provide an accessory database to consult before an in situ TEM/STEM temperature calibration experiment.


Sign in / Sign up

Export Citation Format

Share Document