Effects of aging time on the microstructure and mechanical properties of laser-cladded 18Ni300 maraging steel

2021 ◽  
Vol 56 (14) ◽  
pp. 8835-8847
Author(s):  
H. M. Zhu ◽  
J. W. Zhang ◽  
J. P. Hu ◽  
M. N. Ouyang ◽  
C. J. Qiu
Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1666
Author(s):  
Tsegaye Sh. Lemmi ◽  
Marcin Barburski ◽  
Adam Kabziński ◽  
Krzysztof Frukacz

Textile materials produced from a high tenacity industrial polyester fiber are most widely used in the mechanical rubber goods industry to reinforce conveyor belts, tire cords, and hoses. Reinforcement of textile rubber undergoes a vulcanization process to adhere the textile materials with the rubber and to enhance the physio-mechanical properties of the product. The vulcanization process has an influence on the textile material being used as a reinforcement. In this work, the effects of aging temperature and time on the high tenacity polyester yarn’s mechanical and surface structural properties were investigated. An experiment was carried out on a pre-activated high tenacity polyester yarn of different linear densities, by aging the yarn specimens under various aging temperatures of 140, 160, 200, and 220 °C for six, twelve, and thirty-five minutes of aging time. The tensile properties and surface structural change in the yarns pre- and post-aging were studied. The investigation illustrates that aging time and temperature influence the surface structure of the fiber, tenacity, and elongation properties of the yarn. Compared to unaged yarn, an almost five times higher percentage of elongation was obtained for the samples aged at 220 °C for 6 min, while the lowest tenacity was obtained for the sample subjected to aging under 220 °C for 35 min.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 603
Author(s):  
Natalia Rońda ◽  
Krzysztof Grzelak ◽  
Marek Polański ◽  
Julita Dworecka-Wójcik

This work investigates the effect of layer thickness on the microstructure and mechanical properties of M300 maraging steel produced by Laser Engineered Net Shaping (LENS®) technique. The microstructure was characterized using light microscopy (LM) and scanning electron microscopy (SEM). The mechanical properties were characterized by tensile tests and microhardness measurements. The porosity and mechanical properties were found to be highly dependent on the layer thickness. Increasing the layer thickness increased the porosity of the manufactured parts while degrading their mechanical properties. Moreover, etched samples revealed a fine cellular dendritic microstructure; decreasing the layer thickness caused the microstructure to become fine-grained. Tests showed that for samples manufactured with the chosen laser power, a layer thickness of more than 0.75 mm is too high to maintain the structural integrity of the deposited material.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1440 ◽  
Author(s):  
Peng Duan ◽  
Zongde Liu ◽  
Shuchao Gu ◽  
Song Wang

This paper described systematically the changes in microstructure and mechanical properties of Inconel 783 alloy after a considerably long time (equivalently 55,000 h, about 76.4 months) of thermal exposure. Based on the Inconel 783 alloy bolts of an intermediate pressure main stop valve used in a 1000 MW ultra-supercritical unit, the evolution of microstructures and mechanical properties were studied after 700 °C aging temperature with different aging times (1000 h, 3000 h and 20,000 h, corresponding to about 1.4 months, 4.2 months and 27.8 months, respectively), using an optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffractometer (XRD), a universal tensile testing machine and impact testing machine. The results indicated that the bolts aged for 1000 h in two temperatures, showing the second needle β phase, of which the quantity and size obviously increased with aging time. Meanwhile, the characteristics in quantity and shape of the primary β phase changed obviously with the aging time, which transformed to strip the Ni5Al3 and Laves-Nb-rich brittle phase in the matrix after aging for 20,000 h. The size of the γ’ phase grew bigger with aging time, and orientation distributions have been observed obviously at 3000 h aging in 700 °C. Compared with the 650 °C aging temperature, the coarsening of γ’ precipitates and second needle β, the orientation distributions of γ’ were more obvious at the 700 °C aging temperature with aging time, which resulted in the rapid decline in yield strength and tensile strength and obvious increase in the brittleness for Inconel 783 alloy bolts.


Sign in / Sign up

Export Citation Format

Share Document