scholarly journals Effect of Thermal Aging on the Mechanical Properties of High Tenacity Polyester Yarn

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1666
Author(s):  
Tsegaye Sh. Lemmi ◽  
Marcin Barburski ◽  
Adam Kabziński ◽  
Krzysztof Frukacz

Textile materials produced from a high tenacity industrial polyester fiber are most widely used in the mechanical rubber goods industry to reinforce conveyor belts, tire cords, and hoses. Reinforcement of textile rubber undergoes a vulcanization process to adhere the textile materials with the rubber and to enhance the physio-mechanical properties of the product. The vulcanization process has an influence on the textile material being used as a reinforcement. In this work, the effects of aging temperature and time on the high tenacity polyester yarn’s mechanical and surface structural properties were investigated. An experiment was carried out on a pre-activated high tenacity polyester yarn of different linear densities, by aging the yarn specimens under various aging temperatures of 140, 160, 200, and 220 °C for six, twelve, and thirty-five minutes of aging time. The tensile properties and surface structural change in the yarns pre- and post-aging were studied. The investigation illustrates that aging time and temperature influence the surface structure of the fiber, tenacity, and elongation properties of the yarn. Compared to unaged yarn, an almost five times higher percentage of elongation was obtained for the samples aged at 220 °C for 6 min, while the lowest tenacity was obtained for the sample subjected to aging under 220 °C for 35 min.

2006 ◽  
Vol 324-325 ◽  
pp. 1253-1256
Author(s):  
C.S. Kim ◽  
J.H. Kang ◽  
Jai Won Byeon ◽  
S.I. Kwun

The magnetic coercivity of ferritic 12Cr steel was experimentally studied in order to characterize its microstructures and mechanical properties during isothermal aging. As the aging time increased, the M23C6 carbide coarsened and additional precipitation of Fe2W phase was induced. The width of martensite lath increased to about 0.4μm after 4000 hrs of aging. The coercivity decreased as the number of precipitate decreased and the width of martensite lath increased. The hardness was proportional to the magnetic coercivity. These empirical linear relations suggested that the change in the microstructures and strength of ferritic 12Cr steel during thermal aging could be evaluated by monitoring the magnetic coercivity.


Author(s):  
Chen Shuangjian ◽  
Li Chaowen ◽  
Yu Kun ◽  
Li Zhijun ◽  
Xintai Zhou ◽  
...  

Ni-Mo-Cr alloys are the main structure materials for the Thorium molten salt reactor. In order to investigate the properties of welded joints of Ni-Mo-Cr alloy under long-term elevated temperature service, mechanical behavior and microstructure of joints aged at 650°C for 250h, 500h, 1000h, 2000h and 4000h were studied. Optical microscopy and scanning electron microscopy were used to study the effects of aging time on the grain size and carbides. Meanwhile, hardness, strength and fracture morphology of welded joints were also analyzed. In this study, the eutectic was observed in the weld metal and heat affected zone. The grain sizes of base metal of welded joints under different aging time were steady at 100μm approximately. Hardness test of welded joints indicated a slight climbing trend by increasing of aging time. The results of tensile test showed that the performance of welded joints after aging was better than that of as-welded joint and increased by growth of aging time, it was stable for the mechanical properties of aged welded joints in long term aging for up to 4000h as well. Moreover, the fracture morphology and the mechanism were observed by mean of SEM, the main fracture mechanism was ductile fracture for all the joints under different aging time. The second phase precipitations with increasing of aging time were the main contributing factor to enhance of mechanical properties.


2014 ◽  
Vol 582 ◽  
pp. 229-235 ◽  
Author(s):  
Chih-Yao Liu ◽  
Min-Hsiung Hon ◽  
Moo-Chin Wang ◽  
Ying-Ru Chen ◽  
Kuo-Ming Chang ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Tian Yang ◽  
Yan Zhao ◽  
Hansong Liu ◽  
Shu Xiong

This paper investigates the effect of sizing agent molecular weight on carbon fiber (CF) surface properties and the effect of thermal aging time on mechanical properties of CF/epoxy composites. The surface properties of three CCF800 CF samples with varying sizing agent molecular weight were characterized by surface morphology, surface roughness, chemical functional groups, and element composition. The results showed that the sample with low molecular weight exhibited low roughness and high proportion of activated carbon atoms. The flexural strength, flexural modulus, and interlaminar shear strength of CCF800/5228 composites were measured at 25°C and 150°C by thermal ageing time 0, 100 h, 250 h, 500 h, and 1000 h. The results showed that the thermal aging time up to 1000 h had little effect on the flexural modulus, and the interlaminar shear performance at 150°C showed a trend of increasing at the beginning and then decreasing.


2013 ◽  
Vol 652-654 ◽  
pp. 1035-1042
Author(s):  
Tao Wu ◽  
Xian Fei Ding ◽  
Jing Sun ◽  
Wei Dong Zhang ◽  
Dong Bai Sun ◽  
...  

The main task of this work was to study the effects of aging time and aging temperature on the microstructure and mechanical properties of 6082 aluminum alloy extrusions. Artificial aging was performed on the alloy extrusions at the temperatures of 150, 175 and 200 °C for the aging times of 4, 8 and 12 h. The microstructure evolution of the aluminum alloy extrusions with increase of the aging time and temperature was investigated by Field Emission Scanning Electron Microscope (FESEM). For the purpose of how the aging process affected the mechanical properties, tensile tests were performed. The results showed that the optimum aging treatment was 175 °C/4 h. Under this condition, the tensile strength (Rm) and the yield strength (Rp) in the longitudinal direction of the extrusions reached the maximum value more than 350MPa and 320MPa, respectively, and the tensile elongation (A) was more than 15%.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1142
Author(s):  
S. V. Sajadifar ◽  
P. Krooß ◽  
H. Fröck ◽  
B. Milkereit ◽  
O. Kessler ◽  
...  

In the present study, microstructural and mechanical properties of EN AW 7075 following stress-aging were assessed. For this purpose, properties of stress-aged samples were compared with values obtained for conventionally aged counterparts. It is revealed that the strength and hardness of EN AW 7075 can be increased by the presence of external stresses during aging. Precipitation kinetics were found to be accelerated. The effects of conventional and stress-aging on the microstructure were analyzed using synergetic techniques: the differently aged samples were probed by differential scanning calorimetry (DSC) in order to characterize the precipitation processes. DSC was found to be an excellent screening tool for the analysis of precipitation processes during aging of this alloy with and without the presence of external stresses. Furthermore, using electron microscopy it was revealed that an improvement in mechanical properties can be correlated to changes in the morphologies and sizes of precipitates formed.


2020 ◽  
Vol 35 (1) ◽  
pp. 61-70
Author(s):  
Na Young Park ◽  
Young Chan Ko ◽  
Lili Melani ◽  
Hyoung Jin Kim

AbstractFor the mechanical properties of paper, tensile testing has been widely used. Among the tensile properties, the tensile stiffness has been used to determine the softness of low-density paper. The lower tensile stiffness, the greater softness of paper. Because the elastic region may not be clearly defined in a load-elongation curve, it is suggested to use the tensile modulus which is defined as the slope between the two points in the curve. The two points which provide the best correlation with subjective softness evaluation should be selected. Low-density paper has a much lower tensile strength, but much larger elongation at the break. It undergoes a continuous structural change during mechanical testing. The degree of the structural change should depend on tensile conditions such as the sample size, the gauge length, and the rate of elongation. For low-density paper, the tensile modulus and the tensile strength should be independent of each other. The structure efficiency factor (SEF) is defined as a ratio of the tensile strength to the tensile modulus and it may be used a guideline in developing superior low-density paper products.


1995 ◽  
Vol 412 ◽  
Author(s):  
C. Oda ◽  
H. Yoshikawa ◽  
M. Yui

AbstractPalladium solubility was measured in a dilute aqueous solution at room temperature in the pH range from 3 to 13 under anaerobic conditions. Crystalline Pd metal was clearly visible and the concentration of palladium in solution decreased gradually with aging time. The palladium concentrations in solution were less than 9.4×10-10M in the pH range from 4 to 10 and increased to 10-7M in the pH range greater than 10. This study suggests that palladium concentrations in certain high-level waste repository environments may be limited by Pd metal and may be less than 10-9M.


Sign in / Sign up

Export Citation Format

Share Document