Preparation of three-dimensional ordered macroporous Cu2O film through photonic crystal template-assisted electrodeposition method

2014 ◽  
Vol 25 (12) ◽  
pp. 5646-5651 ◽  
Author(s):  
Jin-Ping Zhang ◽  
Li-Ping Yu
2015 ◽  
Vol 5 (9) ◽  
pp. 4594-4601 ◽  
Author(s):  
Jinguo Wang ◽  
Gaoyang Yang ◽  
Li Cheng ◽  
Eun Woo Shin ◽  
Yong Men

MCr2O4 catalysts with three-dimensional ordered macroporous structures displayed superior catalytic activity for soot combustion to their bulk counterparts.


2006 ◽  
Vol 532-533 ◽  
pp. 568-571
Author(s):  
Ming Zhou ◽  
Hai Feng Yang ◽  
Li Peng Liu ◽  
Lan Cai

The photo-polymerization induced by Two-Photon Absorption (TPA) is tightly confined in the focus because the efficiency of TPA is proportional to the square of intensity. Three-dimensional (3D) micro-fabrication can be achieved by controlling the movement of the focus. Based on this theory, a system for 3D-micro-fabrication with femtosecond laser is proposed. The system consists of a laser system, a microscope system, a real-time detection system and a 3D-movement system, etc. The precision of micro-machining reaches a level down to 700nm linewidth. The line width was inversely proportional to the fabrication speed, but proportional to laser power and NA. The experiment results were simulated, beam waist of 0.413μm and TPA cross section of 2×10-54cm4s was obtained. While we tried to optimize parameters, we also did some research about its applications. With TPA photo-polymerization by means of our experimental system, 3D photonic crystal of wood-pile structure twelve layers and photonic crystal fiber are manufactured. These results proved that the micro-fabrication system of TPA can not only obtain the resolution down to sub-micron level, but also realize real 3D micro-fabrication.


2000 ◽  
Vol 62 (4) ◽  
pp. R2243-R2246 ◽  
Author(s):  
Shawn-Yu Lin ◽  
J. G. Fleming ◽  
E. Chow ◽  
Jim Bur ◽  
K. K. Choi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lih-Ren Chen ◽  
Kuo-Bin Hong ◽  
Hsiu-Ling Chen ◽  
Kuan-Chih Huang ◽  
Tien-Chang Lu

AbstractWe designed and fabricated a photonic crystal surface emitting laser (PCSEL) with vertically integrated diffractive optical elements on their top to study the mechanism of static beam steering on a single chip. The deflected output beam by the self-formed periodic ITO cladding layer of the PCSEL can be further steered by changing the grating period and azimuthal angle of the diffractive gratings relative to the photonic crystal. Through the analysis of photonic band structure and lasing characteristics, the periodic ITO structure is coupled to the photonic crystal band, whereas the integrated grating serves the diffractive function only. The findings pave the way for the design of PCSELs enabling single or multiple output beam with varying direction capability. This type of laser is regarded as an ideal light source for various applications, such as light detection and ranging and three-dimensional sensing systems.


Sign in / Sign up

Export Citation Format

Share Document