The effects of polyvinylpyrrolidone and thermal annealing on red shifts for absorption spectra of the nanoparticle Au/TiO2 thin film with different Au ratios

2016 ◽  
Vol 28 (2) ◽  
pp. 2075-2085 ◽  
Author(s):  
Tien Thanh Nguyen ◽  
Hong Trang Pham ◽  
Khac An Dao
2011 ◽  
Vol 115 (46) ◽  
pp. 22755-22760 ◽  
Author(s):  
Jiaming Zhang ◽  
Jie Lian ◽  
Fereydoon Namavar ◽  
Jianwei Wang ◽  
Hani Haider ◽  
...  

2013 ◽  
Vol 113 (12) ◽  
pp. 126101 ◽  
Author(s):  
Masahito Niibe ◽  
Keiji Sano ◽  
Takuya Kotaka ◽  
Retsuo Kawakami ◽  
Kikuo Tominaga ◽  
...  

Author(s):  
Frastica Deswardani ◽  
Helga Dwi Fahyuan ◽  
Rimawanto Gultom ◽  
Eif Sparzinanda

Telah dilakukan penelitian mengenai pengaruh konsentrasi doping karbon pada lapisan tipis TiO2 yang ditumbuhkan dengan metode spray terhadap struktur kristal dan morfologi TiO2. Hasil karakterisasi SEM menunjukkan bahwa penambahan doping karbon dapat meningkatkan ukuran butir. Lapisan TiO2 doping karbon 8% diperoleh ukuran butir terbesar adalah 1.35 μm, sedangkan ukuran tekecilnya adalah 0.45 μm. Sementara itu, untuk lapisan tipis TiO2 didoping karbon 15% memiliki ukuran butir terbesar yaitu 1.76 μm dan terkecil 0.9 μm. Hasil XRD menunjukkan seluruh puncak difraksi lapisan tipis TiO2 dengan doping karbon 8% dan 15% merupakan TiO2 anatase. Ukuran kristal lapisan TiO2 didoping karbon 8% diperoleh sebesar 638,08 Å dan untuk pendopingan 15% karbon ukuran kristal lapisan tipis TiO2 adalah 638,09 Å, hal ini menunjukkan ukuran kristal kedua sampel tidak mengalami perubahan yang signifikan.   TiO2 thin film with carbon doping has been successfully grown by spray method. The research on the effect of carbon doping on crystal structure and morfology of TiO2 has been prepared by varying carbon concentration (8% and 15% carbon). Analysis of SEM showed that the addition of carbon may increase the grain size. Thin film of TiO2 doped carbon 8% has the largest grain size 1.35 μm, while the smallest grain size is 0.45 μm. Meanwhile, for thin film TiO2 doped carbon 15% has the largest grain size 1.76 μm and smallest 0.9 μm. The XRD results showed the entire diffraction peak of thin film TiO2 doped carbon 8% and 15% were TiO2 anatase. The crystal size of thin film TiO2 doped carbon 8% was obtained at 638.08 Å and for thin film TiO2 doped carbon 15% the crystalline size of TiO2 thin film was 638.09 Å, this shows that the crystal size of both samples did not change significantly.    


2018 ◽  
Vol 15 (2) ◽  
pp. 188-196 ◽  
Author(s):  
Chengpeng Xu ◽  
Shengying Ye ◽  
Xiaolei Cui ◽  
Quan Zhang ◽  
Yan Liang

Background: Improper storage and raw materials make peanut oil susceptible to Aflatoxin B1 (AFB1). The semiconductor TiO2 photocatalysis technology is an effective technology which is widely used in sewage treatment, environmental protection and so on. Moreover, the photocatalytic efficiency can be improved by doping I. Method: The experiment is divided into two parts. In the first part, supported TiO2 thin film (STF) was prepared on the quartz glass tube (QGT) by the sol-gel and calcination method and the supported iodine doped supported TiO2 thin film (I-STF) was synthesized using potassium iodate solution. In the second part, the photocatalytic degradation of AFB1 was performed in a self-made photocatalytic reactor. The AFB1 was detected by ELISA kit. Results: The photocatalytic degradation of AFB1 has been proven to follow pseudo first-order reaction kinetics well (R2 > 0.95). The maximum degradation rate of 81.96%, which was reached at the optimum iodine concentration of 0.1mol/L, was 11.38% higher than that with undoped STF. The doping of iodine reduces the band-gap of TiO2, thereby increasing the photocatalytic response range. The proportion of Ti4+ in I-STF has decreased, which means that Ti4+ are replaced by I. The I-STF prepared at iodine concentration of 0.1mol/L has good photocatalytic properties.


2011 ◽  
Vol 4 (4) ◽  
pp. 1411 ◽  
Author(s):  
Takashi Kamegawa ◽  
Norihiko Suzuki ◽  
Hiromi Yamashita
Keyword(s):  

2021 ◽  
Vol 46 (24) ◽  
pp. 12961-12980
Author(s):  
Amanda Chen ◽  
Wen-Fan Chen ◽  
Tina Majidi ◽  
Bernadette Pudadera ◽  
Armand Atanacio ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 397
Author(s):  
Yu-Chen Chang ◽  
Ying-Chung Chen ◽  
Bing-Rui Li ◽  
Wei-Che Shih ◽  
Jyun-Min Lin ◽  
...  

In this study, piezoelectric zinc oxide (ZnO) thin film was deposited on the Pt/Ti/SiNx/Si substrate to construct the FBAR device. The Pt/Ti multilayers were deposited on SiNx/Si as the bottom electrode and the Al thin film was deposited on the ZnO piezoelectric layer as the top electrode by a DC sputtering system. The ZnO thin film was deposited onto the Pt thin film by a radio frequency (RF) magnetron sputtering system. The cavity on back side for acoustic reflection of the FBAR device was achieved by KOH solution and reactive ion etching (RIE) processes. The crystalline structures and surface morphologies of the films were analyzed by X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). The optimized as-deposited ZnO thin films with preferred (002)-orientation were obtained under the sputtering power of 80 W and sputtering pressure of 20 mTorr. The crystalline characteristics of ZnO thin films and the frequency responses of the FBAR devices can be improved by using the rapid thermal annealing (RTA) process. The optimized annealing temperature and annealing time are 400 °C and 10 min, respectively. Finally, the FBAR devices with structure of Al/ZnO/Pt/Ti/SiNx/Si were fabricated. The frequency responses showed that the return loss of the FBAR device with RTA annealing was improved from −24.07 to −34.66 dB, and the electromechanical coupling coefficient (kt2) was improved from 1.73% to 3.02% with the resonance frequency of around 3.4 GHz.


2020 ◽  
Vol 389 ◽  
pp. 125613 ◽  
Author(s):  
Salih Veziroglu ◽  
Marie Ullrich ◽  
Majid Hussain ◽  
Jonas Drewes ◽  
Josiah Shondo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document