Fabrication of TiO2 nanorods/nanoparticles mixed phase structure via a simple dip-coating method and its application in perovskite solar cells

2018 ◽  
Vol 29 (19) ◽  
pp. 16903-16910 ◽  
Author(s):  
Shuang Feng ◽  
A. Runa ◽  
Li Liu ◽  
Jun Wang ◽  
Pengyu Su ◽  
...  
2007 ◽  
Vol 336-338 ◽  
pp. 283-286 ◽  
Author(s):  
Zan Zheng ◽  
Xiao Ting Li ◽  
Gao Rong Han ◽  
Wen Jian Weng ◽  
Pi Yi Du

(PbySr1-y)ZnxTi1-xO3-x thin films were prepared on ITO/glass substrate by sol–gel process using dip-coating method. The phase structure, morphology, and dielectric properties of thin films were investigated by XRD, SEM and impedance analyzer, respectively. The perovskite phase structure was exhibited in the Zn-doped PST thin films. The formation ability of the thin films of the perovskite phase and its grain size decreased with the increase in doping Zn. The dielectric constant of the thin film was influenced by oxygen vacancies which could be controlled by Zn doping.


2020 ◽  
Vol 49 (1) ◽  
pp. 26-32
Author(s):  
Farah Khaleda Mohd Zaini ◽  
Vengadaesvaran Balakrishnan ◽  
A. Syafiq ◽  
Nasrudin Abd. Rahim ◽  
A.K. Pandey ◽  
...  

Purpose The purpose of this paper is to implement coating system by varying the amount of nano-sized titanium dioxide, (nano-TiO2) combined with various organic binders and to study the coating effects on the performance of solar cell in terms of temperature and efficiency. Design/methodology/approach Nano-TiO2 coatings are developed in two types of binder networks; the combination of methyltrimethoxy silane (MTMS) and nitric acid and the combination of 3-aminopropyl triethoxysilane (APTES) and MTMS. Overall, the formulations method was cost-effective, produces good transparency, clear and managed to dry at room temperature. The coating mixtures were applied onto the glass substrate by using the dip-coating method and the coated substrate were sent for several characterizations. Findings This study demonstrated that TiO2 nanoparticle coating in APTES/MTMS matrix showed a thermal-decreasing result on solar cells, where the cell temperature is reduced to 46.81°C (T2 coating type) from 55.74°C (without coating) after 1-h exposure under 1,000 W/m2 irradiance in a solar simulator. Contrary to prior works where solar cell coatings were reported to reduce the cell temperature at the expense of the cell efficiency, the results from this study reported an improved fill factor (FF) of solar cells. From the photovoltaic (PV) characteristics study, the FF for solar cells is increased by approximately 0.2, i.e. 33.3 per cent, for all coatings compared to the non-coated cell. Research limitations/implications Findings will be able to contribute in the development of temperature-reducing and efficiency-enhancing coating for PV panels. Practical implications A simple dip-coating method provides an even distribution of TiO2 nanoparticle coating on the glass panel, which is cost-effective and time-efficient to reduce the temperature of solar cell while maintaining its efficiency. Originality/value The ability of nano-TiO2 coatings with a simple fabrication method and the right solution to reduce the surface temperature of solar cells while improving the FF of the cells.


2000 ◽  
Vol 628 ◽  
Author(s):  
Kazuki Nakanishi ◽  
Souichi Kumon ◽  
Kazuyuki Hirao ◽  
Hiroshi Jinnai

ABSTRACTMacroporous silicate thick films were prepared by a sol-gel dip-coating method accompanied by the phase separation using methyl-trimethoxysilane (MTMS), nitric acid and dimethylformamide (DMF) as starting components. The morphology of the film varied to a large extent depending on the time elapsed after the hydrolysis until the dipping of the coating solution. On a glass substrate, the films prepared by early dipping had inhomogeneous submicrometer-sized pores on the surface of the film. At increased reaction times, relatively narrow sized isolated macropores were observed and their size gradually decreased with the increase of reaction time. On a polyester substrate, in contrast, micrometer-sized isolated spherical gel domains were homogeneously deposited by earlier dippings. With an increase of reaction time, the volume fraction of the gel phase increased, then the morphology of the coating transformed into co-continuous gel domains and macropores, and finally inverted into the continuous gel domains with isolated macropores. The overall morphological variation with the reaction time was explained in terms of the phase separation and the structure freezing by the forced gelation, both of which were induced by the evaporation of methanol during the dipping operation.


2021 ◽  
Vol 1115 (1) ◽  
pp. 012028
Author(s):  
P T P Aryanti ◽  
G Trilaksono ◽  
A Hotmaida ◽  
M A Afifah ◽  
F P Pratiwi ◽  
...  

Author(s):  
Gözde Çelebi Efe ◽  
Elif Yenilmez ◽  
İbrahim Altinsoy ◽  
Serbülent Türk ◽  
Cuma Bindal

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
M. Selin Sunay ◽  
Onder Pekcan ◽  
Saziye Ugur

Steady-state fluorescence (SSF) technique in conjunction with UV-visible (UVV) technique and atomic force microscope (AFM) was used for studying film formation from TiO2covered nanosized polystyrene (PS) latex particles (320 nm). The effects of film thickness and TiO2content on the film formation and structure properties of PS/TiO2composites were studied. For this purpose, two different sets of PS films with thicknesses of 5 and 20 μm were prepared from pyrene-(P-) labeled PS particles and covered with various layers of TiO2using dip-coating method. These films were then annealed at elevated temperatures above glass transition temperature () of PS in the range of 100–280°C. Fluorescence emission intensity, from P and transmitted light intensity, were measured after each annealing step to monitor the stages of film formation. The results showed that film formation from PS latexes occurs on the top surface of PS/TiO2composites and thus developed independent of TiO2content for both film sets. But the surface morphology of the films was found to vary with both TiO2content and film thickness. After removal of PS, thin films provide a quite ordered porous structure while thick films showed nonporous structure.


Sign in / Sign up

Export Citation Format

Share Document