scholarly journals Synthesis and characterization of PLGA/HAP scaffolds with DNA-functionalised calcium phosphate nanoparticles for bone tissue engineering

Author(s):  
Viktoriya Sokolova ◽  
Kathrin Kostka ◽  
K. T. Shalumon ◽  
Oleg Prymak ◽  
Jyh-Ping Chen ◽  
...  

AbstractPorous scaffolds of poly(lactide-co-glycolide) (PLGA; 85:15) and nano-hydroxyapatite (nHAP) were prepared by an emulsion-precipitation procedure from uniform PLGA–nHAP spheres (150–250 µm diameter). These spheres were then thermally sintered at 83 °C to porous scaffolds that can serve for bone tissue engineering or for bone substitution. The base materials PLGA and nHAP and the PLGA–nHAP scaffolds were extensively characterized by X-ray powder diffraction, infrared spectroscopy, thermogravimetry, differential scanning calorimetry, and scanning electron microscopy. The scaffold porosity was about 50 vol% as determined by relating mass and volume of the scaffolds, together with the computed density of the solid phase (PLGA–nHAP). The cultivation of HeLa cells demonstrated their high cytocompatibility. In combination with DNA-loaded calcium phosphate nanoparticles, they showed a good activity of gene transfection with enhanced green fluorescent protein (EGFP) as model protein. This is expected enhance bone growth around an implanted scaffold or inside a scaffold for tissue engineering.


NANO ◽  
2012 ◽  
Vol 07 (04) ◽  
pp. 1230004 ◽  
Author(s):  
ZHE WANG ◽  
ZHURONG TANG ◽  
FANGZHU QING ◽  
YOULIANG HONG ◽  
XINGDONG ZHANG

To repair bone defects, an important approach is to fabricate tissue engineering scaffolds as substitutions to replace auto-/allologous bones. Currently, processing a biomaterial into three-dimensional porous scaffolds and incorporating the calcium phosphate (Ca–P) nanoparticles into scaffolds profile two main characteristics of bone tissue engineering scaffolds. Based on this fact, in this paper we describe the design principles of the Ca–P nanoparticle-based and porous bone tissue engineering scaffolds. Then we summarize a variety of the Ca–P nanoparticle-based scaffolds, including discussion of the integration of the Ca–P nanoparticles with ceramics and polymers, followed by introduction of safety of the Ca–P nanoparticles in scaffolds.



Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1570 ◽  
Author(s):  
Tanya J. Levingstone ◽  
Simona Herbaj ◽  
Nicholas J. Dunne

Bone injuries and diseases constitute a burden both socially and economically, as the consequences of a lack of effective treatments affect both the patients’ quality of life and the costs on the health systems. This impended need has led the research community’s efforts to establish efficacious bone tissue engineering solutions. There has been a recent focus on the use of biomaterial-based nanoparticles for the delivery of therapeutic factors. Among the biomaterials being considered to date, calcium phosphates have emerged as one of the most promising materials for bone repair applications due to their osteoconductivity, osteoinductivity and their ability to be resorbed in the body. Calcium phosphate nanoparticles have received particular attention as non-viral vectors for gene therapy, as factors such as plasmid DNAs, microRNAs (miRNA) and silencing RNA (siRNAs) can be easily incorporated on their surface. Calcium phosphate nanoparticles loaded with therapeutic factors have also been delivered to the site of bone injury using scaffolds and hydrogels. This review provides an extensive overview of the current state-of-the-art relating to the design and synthesis of calcium phosphate nanoparticles as carriers for therapeutic factors, the mechanisms of therapeutic factors’ loading and release, and their application in bone tissue engineering.



2020 ◽  
Vol 116 ◽  
pp. 111194
Author(s):  
Syama Santhakumar ◽  
Ayako Oyane ◽  
Maki Nakamura ◽  
Kenji Koga ◽  
Saori Miyata ◽  
...  




Polymers ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 807 ◽  
Author(s):  
Ranjith Kankala ◽  
Xiao-Ming Xu ◽  
Chen-Guang Liu ◽  
Ai-Zheng Chen ◽  
Shi-Bin Wang

In recent times, tremendous progress has been evidenced by the advancements in various methods of generating three-dimensional (3D) porous scaffolds. However, the applicability of most of the traditional approaches intended for generating these biomimetic scaffolds is limited due to poor resolution and strict requirements in choosing materials. In this work, we fabricated 3D porous scaffolds based on the composite inks of gelatin (Gel), nano-hydroxyapatite (n-HA), and poly(lactide-co-glycolide) (PLGA) using an innovative hybrid strategy based on 3D printing and freeze-drying technologies for bone tissue engineering. Initially, the PLGA scaffolds were printed using the 3D printing method, and they were then coated with the Gel/n-HA complex, yielding the Gel/n-HA/PLGA scaffolds. These Gel/n-HA/PLGA scaffolds with exceptional biodegradation, mechanical properties, and biocompatibility have enabled osteoblasts (MC3T3-E1) for their convenient adhesion as a layer and have efficiently promoted their growth, as well as differentiation. We further demonstrated the bone growth by measuring the particular biomarkers that act as key players in the ossification process (i.e., alkaline phosphatase (ALP), osteocalcin (OC), and collagen type-I (COL-I)) and the total proteins of the MC3T3-E1 cells. We anticipate that the convenient generation of highly porous 3D scaffolds based on Gel/n-HA/PLGA fabricated through an innovative combinatorial approach of 3D printing technology and freeze-drying methods may undoubtedly find widespread applications in regenerative medicine.





2021 ◽  
Vol 140 (4) ◽  
pp. 337-343
Author(s):  
FurqanS. Hashim ◽  
MukhlisM. Ismail ◽  
WafaaA. Hussain


2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.



Sign in / Sign up

Export Citation Format

Share Document