scholarly journals A simple and sensitive detection of the binding ligands by using the receptor aggregation and NMR spectroscopy: a test case of the maltose binding protein

Author(s):  
Young Kee Chae ◽  
Yoonjin Um ◽  
Hakbeom Kim

AbstractProtein-ligand interaction is one of the highlights of molecular recognition. The most popular application of this type of interaction is drug development which requires a high throughput screening of a ligand that binds to the target protein. Our goal was to find a binding ligand with a simple detection, and once this type of ligand was found, other methods could then be used to measure the detailed kinetic or thermodynamic parameters. We started with the idea that the ligand NMR signal would disappear if it was bound to the non-tumbling mass. In order to create the non-tumbling mass, we tried the aggregates of a target protein, which was fused to the elastin-like polypeptide. We chose the maltose binding proteinas a test case, and we tried it with several sugars, which included maltose, glucose, sucrose, lactose, galactose, maltotriose, and β-cyclodextrin. The maltose signal in the H-1 NMR spectrum disappeared completely as hoped around the protein to ligand ratio of 1:3 at 298 K where the proteins aggregated. The protein signals also disappeared upon aggregation except for the fast-moving part, which resulted in a cleaner background than the monomeric form. Since we only needed to look for a disappearing signal amongst those from the mixture, it should be useful in high throughput screening. Other types of sugars except for the maltotriose and β-cyclodextrin, which are siblings of the maltose, did not seem to bind at all. We believe that our system would be especially more effective when dealing with a smaller target protein, so both the protein and the bound ligand would lose their signals only when the aggregates formed. We hope that our proposed method would contribute to accelerating the development of the potent drug candidates by simultaneously identifying several binders directly from a mixture.

Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3287 ◽  
Author(s):  
Berin Karaman Mayack ◽  
Wolfgang Sippl ◽  
Fidele Ntie-Kang

Natural products have been used for the treatment of human diseases since ancient history. Over time, due to the lack of precise tools and techniques for the separation, purification, and structural elucidation of active constituents in natural resources there has been a decline in financial support and efforts in characterization of natural products. Advances in the design of chemical compounds and the understanding of their functions is of pharmacological importance for the biomedical field. However, natural products regained attention as sources of novel drug candidates upon recent developments and progress in technology. Natural compounds were shown to bear an inherent ability to bind to biomacromolecules and cover an unparalleled chemical space in comparison to most libraries used for high-throughput screening. Thus, natural products hold a great potential for the drug discovery of new scaffolds for therapeutic targets such as sirtuins. Sirtuins are Class III histone deacetylases that have been linked to many diseases such as Parkinson`s disease, Alzheimer’s disease, type II diabetes, and cancer linked to aging. In this review, we examine the revitalization of interest in natural products for drug discovery and discuss natural product modulators of sirtuins that could serve as a starting point for the development of isoform selective and highly potent drug-like compounds, as well as the potential application of naturally occurring sirtuin inhibitors in human health and those in clinical trials.


2005 ◽  
Vol 4 (2) ◽  
pp. 153535002005051 ◽  
Author(s):  
Robert J. Gillies ◽  
John M. Hoffman ◽  
Kit S. Lam ◽  
Anne E. Menkens ◽  
David R. Piwnica-Worms ◽  
...  

Combinatorial chemistry and high-throughput screening have become standard tools for discovering new drug candidates with suitable pharmacological properties. Now, those same technologies are starting to be applied to the problem of discovering novel in vivo imaging agents. Important differences in the biological and pharmacological properties needed for imaging agents, compared to those for a therapeutic agent, require new screening methods that emphasize those characteristics, such as optimized residence time and tissue specificity, that make for a good imaging agent candidate.


1999 ◽  
Vol 4 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Ilona Kariv ◽  
Michelle E. Stevens ◽  
Davette L. Behrens ◽  
Kevin R. Oldenburg

Impairment of G protein—coupled seven-transmembrane (7 TM) receptor function has been implicated in a variety of different pathologic conditions, suggesting that the discovery of specific antagonists may lead to the development of successful therapeutic agents. The effect of different agents on receptor-ligand interaction is often measured directly in a receptor binding assay; however, this assay format can be time consuming and does not detect agents that interact at sites distal to the native ligand binding site. Cyclic adenosine monophospate (cAMP) represents a ubiquitous second messenger generated in response to ligand binding to many 7 TM receptors. The present study describes the practical adaptation of scintillation proximity methodology, using FlashPlate™ (NEN Life Sciences, Boston, MA) technology to evaluate cAMP production. The bioassay is based on competition between endogenously produced cAMP and exogenously added radiolabeled [125I]-cAMP. Cyclic AMP capture is mediated through an anti-cAMP antibody onto a microplate well surface. Removal of unbound radioligand is not necessary because only ligand within ≤20 μm of the plate surface is detected due to the proximity effect. The data indicate that the use of scintillation proximity technology allows accurate and specific evaluation of G protein—coupled receptor function as measured by cAMP production and is suitable for high throughput screening.


2007 ◽  
Vol 73 (20) ◽  
pp. 6436-6443 ◽  
Author(s):  
Andreas Urban ◽  
Stefan Eckermann ◽  
Beate Fast ◽  
Susanne Metzger ◽  
Matthias Gehling ◽  
...  

ABSTRACT Cells containing reporters which are specifically induced via selected promoters are used in pharmaceutical drug discovery and in environmental biology. They are used in screening for novel drug candidates and in the detection of bioactive compounds in environmental samples. In this study, we generated and validated a set of five Bacillus subtilis promoters fused to the firefly luciferase reporter gene suitable for cell-based screening, enabling the as yet most-comprehensive high-throughput diagnosis of antibiotic interference in the major biosynthetic pathways of bacteria: the biosynthesis of DNA by the yorB promoter, of RNA by the yvgS promoter, of proteins by the yheI promoter, of the cell wall by the ypuA promoter, and of fatty acids by the fabHB promoter. The reporter cells mainly represent novel antibiotic biosensors compatible with high-throughput screening. We validated the strains by developing screens with a set of 14,000 pure natural products, representing a source of highly diverse chemical entities, many of them with antibiotic activity (6% with anti-Bacillus subtilis activity of ≤25 μg/ml]). Our screening approach is exemplified by the discovery of classical and novel DNA synthesis and translation inhibitors. For instance, we show that the mechanistically underexplored antibiotic ferrimycin A1 selectively inhibits protein biosynthesis.


2009 ◽  
Vol 14 (4) ◽  
pp. 330-336 ◽  
Author(s):  
Eszter Pais ◽  
John S. Cambridge ◽  
Cage S. Johnson ◽  
Herbert J. Meiselman ◽  
Timothy C. Fisher ◽  
...  

Although the pathophysiology and molecular basis of sickle cell disease (SCD) were described more than half a century ago, an effective and safe therapy is not yet available. This may be explained by the lack of a suitable high-throughput technique that allows rapid screening of thousands of compounds for their antisickling effect. The authors have thus developed a novel high-throughput screening (HTS) assay based on detecting the ability of red blood cells (RBC) to traverse a column of tightly packed Sephacryl chromatography beads. When deoxygenated, sickle RBC are rigid and remain on the top of the column. However, when deoxygenated and treated with an effective antisickling agent, erythrocytes move through the Sephacryl media and produce a red dot on the bottom of the assay tubes. This approach has been adapted to wells in a 384-well microplate. Results can be obtained by optical scanning: The size of the red dot is proportional to the antisickling effect of the test molecule. The new assay is simple, inexpensive, reproducible, requires no special reagents, and should be readily adaptable to robotic HTS systems. It has the potential to identify novel drug candidates, allowing the development of new therapeutic options for individuals affected with SCD. ( Journal of Biomolecular Screening. 2009:330-336)


1997 ◽  
Vol 2 (3) ◽  
pp. 153-157 ◽  
Author(s):  
Geoffrey W. Mellor ◽  
Simon J. Fogarty ◽  
M. Shane O'Brien ◽  
Miles Congreve ◽  
Martyn N. Banks ◽  
...  

Identification of putative drug candidates by high throughput screening is assuming enormous importance within the pharmaceutical industry, driven by increasing numbers of valid therapeutic targets from both classical and molecular biological sources. Screening is an applied discipline that requires equipment and, more importantly, thinking that is fundamentally different from more traditional, lower throughput assay methodology. This article describes the process as applied to the discovery of selective antagonists of three chemokine receptor binding systems, from the original biological targets to chemically prosecutable lead compounds, which are currently being investigated using traditional medicinal and combinatorial chemistry methods.


2019 ◽  
Author(s):  
Seiya Kitamura ◽  
Qinheng Zheng ◽  
Jordan L. Woehl ◽  
angelo solan ◽  
Emily Chen ◽  
...  

<p>Optimization of small-molecule probes or drugs is a lengthy, challenging and resource-intensive process. Lack of automation and reliance on skilled medicinal chemists is cumbersome in both academic and industrial settings. Here, we demonstrate a high-throughput hit-to-lead process based on the biocompatible SuFEx click chemistry. A modest high-throughput screening hit against a bacterial cysteine protease SpeB was modified with a SuFExable iminosulfur oxydifluoride [RN=S(O)F2] motif, rapidly diversified into 460 analogs in overnight reactions, and the products directly screened to yield drug-like inhibitors with 300-fold higher potency. We showed that the improved molecule is drug-like and biologically active in a bacteria-host coculture. Since these reactions can be performed on a picomole scale to conserve reagents, we anticipate our methodology can accelerate the development of robust biological probes and drug candidates.</p>


2016 ◽  
Vol 6 (4) ◽  
pp. 124-130
Author(s):  
Mahadev Sahu ◽  
Armiya Sultan ◽  
Manas Ranjan Barik

In the current study we carried out computational drug designing and dock-ing studies on Tyrosine-protein phosphatase non-receptor type 11 (PTPN11). Scaffold selection was based on the functional properties of PTPN11. Leads were identified based on several physiochemical properties and we created our library with those new molecules that were generated based on Lipinski's rule of five. Further, we carried out high throughput screening on 21 molecules from scaffolds selected. Screening of molecules was based on the criterions such as, TOPKAT (toxicity analysis) and ADMET (absorption, distribution, metabolism, elimination) properties. Among the ligands de-signed, only one compound was identified to have premium interaction within the targeted domain. Pharmacophore was generated and analyzed for selected drug candidate. Our results suggest that O-(3-hydroxy-4-methoxyphenyl) S-methyl dithio dicarbonate is a potent drug molecule in terms of physiochemical and docking properties. In conclusion, the identified compound has great potential to inhibit tyrosine-protein phosphatase non-receptor type 11 (PTPN11).


2011 ◽  
Vol 16 (6) ◽  
pp. 628-636 ◽  
Author(s):  
Kyosuke Hino ◽  
Hidetaka Nagata ◽  
Manabu Shimonishi ◽  
Motoharu Ido

Adiponectin is an adipokine secreted by adipocytes and plays a role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. Several studies have shown that upregulation of adiponectin has a number of therapeutic benefits. Although peroxisome proliferator-activated receptor γ (PPARγ) agonists are known to increase adiponectin secretion both in cultured adipocytes and humans, they have several side effects, such as weight gain, congestive heart failure, and edema. Therefore, adiponectin secretion modulators that do not possess PPARγ agonistic activity seem to promising for a number of conditions. Here, the authors report on the development of a reporter-based high-throughput screening (HTS) assay using insulin-resistant-mimic 3T3-L1 adipocytes for discovery of adiponectin secretion modulators. They screened a library of approximately 100 000 small-molecule compounds using this model, performed several follow-up screens, and identified six hit compounds that increase adiponectin secretion without having PPARγ agonistic activity. These compounds may be useful drug candidates for diabetes, obesity, atherosclerosis, and other metabolic syndromes. This HTS assay might be applicable to screening for other adipokine modulators that can be useful for the treatment of other conditions.


Sign in / Sign up

Export Citation Format

Share Document