Assessment of a new volumetric capnography-derived parameter to reflect compression quality and to predict return of spontaneous circulation during cardiopulmonary resuscitation in a porcine model

Author(s):  
Lili Zhang ◽  
Kui Jin ◽  
Feng Sun ◽  
Jun Xu ◽  
Xuezhong Yu ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiffany S. Ko ◽  
Constantine D. Mavroudis ◽  
Ryan W. Morgan ◽  
Wesley B. Baker ◽  
Alexandra M. Marquez ◽  
...  

AbstractNeurologic injury is a leading cause of morbidity and mortality following pediatric cardiac arrest. In this study, we assess the feasibility of quantitative, non-invasive, frequency-domain diffuse optical spectroscopy (FD-DOS) neuromonitoring during cardiopulmonary resuscitation (CPR), and its predictive utility for return of spontaneous circulation (ROSC) in an established pediatric swine model of cardiac arrest. Cerebral tissue optical properties, oxy- and deoxy-hemoglobin concentration ([HbO2], [Hb]), oxygen saturation (StO2) and total hemoglobin concentration (THC) were measured by a FD-DOS probe placed on the forehead in 1-month-old swine (8–11 kg; n = 52) during seven minutes of asphyxiation followed by twenty minutes of CPR. ROSC prediction and time-dependent performance of prediction throughout early CPR (< 10 min), were assessed by the weighted Youden index (Jw, w = 0.1) with tenfold cross-validation. FD-DOS CPR data was successfully acquired in 48/52 animals; 37/48 achieved ROSC. Changes in scattering coefficient (785 nm), [HbO2], StO2 and THC from baseline were significantly different in ROSC versus No-ROSC subjects (p < 0.01) after 10 min of CPR. Change in [HbO2] of + 1.3 µmol/L from 1-min of CPR achieved the highest weighted Youden index (0.96) for ROSC prediction. We demonstrate feasibility of quantitative, non-invasive FD-DOS neuromonitoring, and stable, specific, early ROSC prediction from the third minute of CPR.


Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Claudius Balzer ◽  
Franz J Baudenbacher ◽  
Antonio Hernandez ◽  
Michele M Salzman ◽  
Matthias L Riess ◽  
...  

Introduction: A higher chest compression fraction (CCF) or percentage of time providing chest compressions is associated with improved survival after cardiac arrest (CA). Pauses in chest compression duration during cardiopulmonary resuscitation (CPR) to palpate a pulse can reduce the CCF. Peripheral Intravenous Analysis (PIVA) is a novel method for determining cardiac and volume status using waveforms from a standard peripheral intravenous (IV) line. We hypothesize that PIVA will demonstrate the onset of return of spontaneous circulation (ROSC) without interruption of CPR. Methods: Eight Zucker Diabetic Fatty (ZDF) rats (4 lean, 4 diabetic) were intubated, ventilated, and cannulated with a 24g IV in the tail vein and a 22g IV in the femoral artery, each connected to a TruWave pressure transducer. Mechanical ventilation was discontinued to achieve CA. After 8 minutes, CPR began with mechanical ventilation, IV epinephrine, and chest compressions using 1.5 cm at 200 times per minute until mean arterial pressure (MAP) increased to 120 mmHg per arterial line. All waveforms were recorded and analyzed in LabChart. PIVA was measured using a Fourier transform of the peripheral venous waveform. Data are mean ± SD. Statistics: Unpaired student’s t-test (two-tailed), α = 05. Results: CA and ROSC were achieved in all 8 rats. Within 1 minute of CPR, there was a 70 ± 35 fold increase/decrease in PIVA during CPR that was temporally associated with ROSC. Within 8 ± 13 seconds of a reduction in PIVA, there was a rapid increase in end-tidal CO 2 . In all rats, ROSC occurred within 38 ± 9 seconds of the maximum PIVA value. Peripheral venous pressure decreased by 1.2 ± 0.9 mmHg during resuscitation and ROSC, which was not significant different at p=0.05. Conclusion: In this pilot study, PIVA detected ROSC without interrupting CPR. Use of PIVA may obviate the need pause CPR for pulse checks, and may result in a higher CCF and survival. Future studies will focus on PIVA and CPR efficacy.


2018 ◽  
Vol 41 (8) ◽  
pp. 431-436 ◽  
Author(s):  
Tuncay Sahutoglu ◽  
Elif Sahutoglu

Background/Aims: Severe metabolic acidosis during cardiopulmonary resuscitation is an important and yet unresolved issue. The potential use of hemodialysis for severe metabolic acidosis during cardiopulmonary resuscitation was investigated. Methods: Acute hemodialyses between January 2012 and April 2017 were reviewed for patients with concomitant hemodialysis and cardiopulmonary resuscitation. In addition, MEDLINE was searched for similar reports. Data were extracted from hospital records. Results: Two patients (36M, 70F) were found to study, without similar reports in MEDLINE. Cardiac arrests (in-hospital) occurred due to severe metabolic acidosis in both patients (due to ethylene glycol and metformin intoxications, respectively). Return of spontaneous circulation could not be obtained within the first 28 and 30 min of cardiopulmonary resuscitation only, whereas both patients had return of spontaneous circulation following at least 45 min of concomitant hemodialysis and cardiopulmonary resuscitation. One patient (70F) was discharged with good neurological outcome, but the other died. Conclusion: The addition of high-efficiency hemodialysis during cardiopulmonary resuscitation may contribute to the return of spontaneous circulation in patients with severe metabolic acidosis due to intoxication.


2020 ◽  
Vol 5 (1) ◽  
pp. e000372
Author(s):  
Michael James Neill ◽  
James M Burgert ◽  
Dawn Blouin ◽  
Benjamin Tigges ◽  
Kari Rodden ◽  
...  

BackgroundAims of the study were to determine the effects of humerus intraosseous (HIO) versus intravenous (IV) administration of epinephrine in a hypovolemic, pediatric pig model. We compared concentration maximum (Cmax), time to maximum concentration (Tmax), mean concentration (MC) over time and return of spontaneous circulation (ROSC).MethodsPediatric pig were randomly assigned to each group (HIO (n=7); IV (n=7); cardiopulmonary resuscitation (CPR)+defibrillation (defib) (n=7) and CPR-only group (n=5)). The pig were anesthetized; 35% of the blood volume was exsanguinated. pigs were in arrest for 2 min, and then CPR was performed for 2 min. Epinephrine 0.01 mg/kg was administered 4 min postarrest by either route. Samples were collected over 5 min. After sample collection, epinephrine was administered every 4 min or until ROSC. The Cmax and MC were analyzed using high-performance liquid chromatography. Defibrillation began at 3 min postarrest and administered every 2 min or until ROSC or endpoint at 20 min after initiation of CPR.ResultsAnalysis indicated that the Cmax was significantly higher in the IV versus HIO group (p=0.001). Tmax was shorter in the IV group but was not significantly different (p=0.789). The MC was significantly greater in the IV versus HIO groups at 90 and 120 s (p<0.05). The IV versus HIO had a significantly higher MC (p=0.001). χ2 indicated the IV group (5 out of 7) had significantly higher rate of ROSC than the HIO group (1 out of 7) (p=0.031). One subject in the CPR+defib and no subjects in the CPR-only groups achieved ROSC.DiscussionBased on the results of our study, the IV route is more effective than the HIO route.


2018 ◽  
Vol 13 (2) ◽  
pp. 97-106
Author(s):  
LTC Robert P. Long, II, PhD, CRNA ◽  
LTC Stephanie M. Gardner, DNP, CRNA ◽  
James Burgert, DNAP, CRNA ◽  
LTC Craig A. Koeller, DVM, DACLAM, AFRL ◽  
LTC Joseph O’Sullivan, PhD, CRNA ◽  
...  

Objective: Compare the maximum concentration (Cmax), time to maximum concentration (Tmax), mean concentration, rate of return of spontaneous circulation (ROSC), time to ROSC, and odds of ROSC when epinephrine is administered by humerus intraosseous (HIO) compared to intravenous (IV) routes in both a hypovolemic and normovolemic cardiac arrest model.Design: Prospective, between subjects, randomized experimental study.Setting: TriService Facility.Subjects: Twenty-eight adult Yorkshire Swine were randomly assigned to four groups: HIO normovolemia; HIO hypovolemia; IV normovolemia; and IV hypovolemia.Intervention: Swine were anesthetized. The hypovolemic group was exsanguinated 31 percent of their blood volume. Subjects were placed into arrest. After 2 minutes, cardiopulmonary resuscitation (CPR) was initiated. After another 2 minutes, 1 mg epinephrine was given by IV or HIO routes; blood samples were collected over 4 minutes. Hypovolemic groups received 500 mL of 5 percent albumin following blood sampling. CPR continued until ROSC or for 30 minutes.Main outcome measures: ROSC, time to ROSC, Cmax, Tmax, mean concentrations over time, odds of ROSC.Results: Cmax was significantly higher, the Tmax, and the time to ROSC were significantly faster in the HIO normovolemic compared to the HIO hypovolemic group (p 0.05). All seven in the HIO normovolemic group achieved ROSC compared to three of the HIO hypovolemic group. Odds of ROSC were 19.2 times greater in the HIO normovolemic compared the HIO hypovolemic group.Conclusion: The HIO is an effective route in a normovolemic model. However, the findings indicate that sufficient blood volume is essential for ROSC in a hypovolemic scenario.


Sign in / Sign up

Export Citation Format

Share Document