Staphylococcus pasteuri (BCVME2) Resident in Buffalo Cervical Vaginal Mucus: A Potential Source of Estrus-Specific Sex Pheromone(s)

Author(s):  
Mahalingam Srinivasan ◽  
Rengasamy Lakshminarayanan Rengarajan ◽  
Dharmadurai Dhanasekaran ◽  
Mohammad Abdulkader Akbarsha ◽  
Govindaraju Archunan
2021 ◽  
Author(s):  
Mahalingam Sriniva ◽  
R. L. Rengarajan ◽  
D. Dhanasekaran ◽  
M. A. Akbarsha ◽  
Govindaraju Archunan

Abstract There are microbes resident in the reproductive tract, some of which could be pathogenic while a few others would, perhaps, play important roles in protecting the reproductive tract from infections. Volatile compounds are known to play role as sex pheromones that attract the males for coitus during estrus or heat. It is likely that these compounds themselves are secondary metabolites of the bacterial flora resident in the vagina. In order to substantiate this hypothesis, bacteria were isolated from cervico-vaginal mucus (CVM) of buffalo during various phases of the oestrous cycle and identified, based on morphological, biochemical and molecular characteristics, as Bacillus during preestrus as well as diestrus, and Staphylococcus during all phases of the oestrous cycle. But, the populations of Staphylococcus differed between different phases of the oestrous cycle, the predominant forms being S. warneri (BCVMPE1_1) during preestrus, S. pastueri (BCVME2) during oestrus and S. epidermis (BCVMDE3) during diestrus. Mice, when used as sensors, efficiently differentiated the oestrus-specific S. pastueri (BCVME2) from the others. HS-GC-MS analysis showed that S. pastueri (BCVME2) produces key volatile compounds viz., acetic, propanoic, isobutyric, butyric, isovaleric and valeric acids. In addition, it is evidenced that S. pasteuri (BCVME2) volatiles influence the sexual behaviours such as flehmen and mounting of the bull. Thus, the paper reports that S. pasteuri (BCVME2) is the potential source of vaginal pheromone(s) during oestrus in buffalo.


Author(s):  
Philippe Fragu

The identification, localization and quantification of intracellular chemical elements is an area of scientific endeavour which has not ceased to develop over the past 30 years. Secondary Ion Mass Spectrometry (SIMS) microscopy is widely used for elemental localization problems in geochemistry, metallurgy and electronics. Although the first commercial instruments were available in 1968, biological applications have been gradual as investigators have systematically examined the potential source of artefacts inherent in the method and sought to develop strategies for the analysis of soft biological material with a lateral resolution equivalent to that of the light microscope. In 1992, the prospects offered by this technique are even more encouraging as prototypes of new ion probes appear capable of achieving the ultimate goal, namely the quantitative analysis of micron and submicron regions. The purpose of this review is to underline the requirements for biomedical applications of SIMS microscopy.Sample preparation methodology should preserve both the structural and the chemical integrity of the tissue.


2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity

2003 ◽  
Author(s):  
Charles Thomas Parker ◽  
Dorothea Taylor ◽  
George M Garrity

Author(s):  
Е.Н. Ильина ◽  
Е.И. Олехнович ◽  
А.В. Павленко

С течением времени подходы к изучению резистентности к антибиотикам трансформировались от сосредоточения на выделенных в виде чистой культуры патогенных микроорганизмах к исследованию резистентности на уровне микробных сообществ, составляющих биотопы человека и окружающей среды. По мере того, как продвигается изучение устойчивости к антибиотикам, возникает необходимость использования комплексного подхода для улучшения информирования мирового сообщества о наблюдаемых тенденциях в этой области. Все более очевидным становится то, что, хотя не все гены резистентности могут географически и филогенетически распространяться, угроза, которую они представляют, действительно серьезная и требует комплексных междисциплинарных исследований. В настоящее время резистентность к антибиотикам среди патогенов человека стала основной угрозой в современной медицине, и существует значительный интерес к определению ниши, в которых бактерии могут получить гены антибиотикорезистентности, и механизмов их передачи. В данном обзоре мы рассматриваем проблемы, возникшие на фоне широкого использования человечеством антибактериальных препаратов, в свете формирования микрофлорой кишечника резервуара генов резистентности. Over the time, studies of antibiotic resistance have transformed from focusing on pathogenic microorganisms isolated as a pure culture to analysis of resistance at the level of microbial communities that constitute human and environmental biotopes. Advancing studies of antibiotic resistance require an integrated approach to enhance availability of information about observed tendencies in this field to the global community. It becomes increasingly obvious that, even though not all resistance genes can geographically and phylogenetically spread, the threat they pose is indeed serious and requires complex interdisciplinary research. Currently, the antibiotic resistance of human pathogens has become a challenge to modern medicine, which is now focusing on determining a potential source for bacterial genes of drug resistance and mechanisms for the gene transmission. In this review, we discussed problems generated by the widespread use of antibacterial drugs in the light of forming a reservoir of resistance genes by gut microflora.


Sign in / Sign up

Export Citation Format

Share Document