Binding Interactions of Toluidine Blue O with Escherichia Coli DNA: Formation of Bridged Structure

2011 ◽  
Vol 21 (4) ◽  
pp. 1439-1453 ◽  
Author(s):  
Malaichamy Ilanchelian ◽  
Ramasamy Ramaraj
2003 ◽  
Vol 69 (8) ◽  
pp. 4474-4481 ◽  
Author(s):  
Andrea Hanna ◽  
Michael Berg ◽  
Valerie Stout ◽  
Anneta Razatos

ABSTRACT Urinary tract infections are the most common urologic disease in the United States and one of the most common bacterial infections of any organ system. Biofilms persist in the urinary tract and on catheter surfaces because biofilm microorganisms are resistant to host defense mechanisms and antibiotic therapy. The first step in the establishment of biofilm infections is bacterial adhesion; preventing bacterial adhesion represents a promising method of controlling biofilms. Evidence suggests that capsular polysaccharides play a role in adhesion and pathogenicity. This study focuses on the role of physiochemical and specific binding interactions during adhesion of colanic acid exopolysaccharide mutant strains. Bacterial adhesion was evaluated for isogenic uropathogenic Escherichia coli strains that differed in colanic acid expression. The atomic force microscope (AFM) was used to directly measure the reversible physiochemical and specific binding interactions between bacterial strains and various substrates as bacteria initially approach the interface. AFM results indicate that electrostatic interactions were not solely responsible for the repulsive forces between the colanic acid mutant strains and hydrophilic substrates. Moreover, hydrophobic interactions were not found to play a significant role in adhesion of the colanic acid mutant strains. Adhesion was also evaluated by parallel-plate flow cell studies in comparison to AFM force measurements to demonstrate that prolonged incubation times alter bacterial adhesion. Results from this study demonstrate that the capsular polysaccharide colanic acid does not enhance bacterial adhesion but rather blocks the establishment of specific binding as well as time-dependent interactions between uropathogenic E. coli and inert substrates.


2009 ◽  
Vol 192 (2) ◽  
pp. 391-399 ◽  
Author(s):  
Adrian F. Alvarez ◽  
Roxana Malpica ◽  
Martha Contreras ◽  
Edgardo Escamilla ◽  
Dimitris Georgellis

ABSTRACT The Arc (anoxic redox control) two-component signal transduction system, consisting of the ArcB sensor kinase and the ArcA response regulator, allows adaptive responses of Escherichia coli to changes of O2 availability. The arcA gene was previously known as the dye gene because null mutants were growth sensitive to the photosensitizer redox dyes toluidine blue and methylene blue, a phenotype whose molecular basis still remains elusive. In this study we report that the toluidine blue O (TBO) effect on the arc mutants is light independent and observed only during aerobic growth conditions. Moreover, 16 suppressor mutants with restored growth were generated and analyzed. Thirteen of those possessed insertion elements upstream of the cydAB operon, rendering its expression ArcA independent. Also, it was found that, in contrast to cythocrome d, cythocrome o was not able to confer toluidine blue resistance to arc mutants, thereby representing an intriguing difference between the two terminal oxidases. Finally, a mechanism for TBO sensitivity and resistance is discussed.


Sign in / Sign up

Export Citation Format

Share Document