A Fluorescence Turn-On Probe for Thiols with a Tunable Dynamic Range

2016 ◽  
Vol 26 (3) ◽  
pp. 1077-1081 ◽  
Author(s):  
Qian Li ◽  
Rui Guo ◽  
Weiying Lin
2018 ◽  
Author(s):  
Abraham G. Beyene ◽  
Ali A. Alizadehmojarad ◽  
Gabriel Dorlhiac ◽  
Aaron M. Streets ◽  
Petr Král ◽  
...  

AbstractNon-covalent interactions between single-stranded DNA (ssDNA) oligonucleotides and single wall carbon nanotubes (SWNTs) have provided a unique class of tunable chemistries for a variety of applications. However, mechanistic insight into both the photophysical and intermolecular phenomena underlying their utility is lacking, resulting in obligate heuristic approaches for producing ssDNA-SWNT based technologies. In this work, we present an ultrasensitive “turn-on” nanosensor for neuromodulators dopamine and norepinephrine with strong ΔF/F0 of up to 3500%, a signal appropriate for in vivo imaging, and uncover the photophysical principles and intermolecular interactions that govern the molecular recognition and fluorescence modulation of this nanosensor synthesized from the non-covalent conjugation of (GT)6 ssDNA strands on SWNTs. The fluorescence modulation of the ssDNA-SWNT conjugate is shown to exhibit remarkable sensitivity to the ssDNA sequence chemistry, length, and surface density, providing a wealth of parameters with which to tune nanosensor dynamic range and strength of fluorescence turn-on. We employ classical and quantum mechanical molecular dynamics simulations to rationalize our experimental findings. Calculations show that (GT)6 ssDNA form ordered loops around SWNT, inducing periodic surface potentials that modulate exciton recombination lifetimes. Further evidence is presented to elucidate how analyte binding modulates SWNT fluorescence. We discuss the implications of our findings for SWNT-based molecular sensing applications.


2010 ◽  
Vol 82 (19) ◽  
pp. 8211-8216 ◽  
Author(s):  
Fang Pu ◽  
Zhenzhen Huang ◽  
Jinsong Ren ◽  
Xiaogang Qu

2018 ◽  
Author(s):  
Suying Xu ◽  
Adam Sedgwick ◽  
Souad Elfecky ◽  
Wenbo Chen ◽  
Ashley Jones ◽  
...  

<p>A boronic acid-based anthracene fluorescent probe was functionalised with an acrylamide unit to incorporate into a hydrogel system for monosaccharide detection<i>. </i>In solution, the fluorescent probe<b> </b>displayed a strong fluorescence turn-on response upon exposure to fructose, and an expected trend in apparent binding constants, as judged by a fluorescence response where D-fructose > D-galactose > D-mannose > D-glucose. The hydrogel incorporating the boronic acid monomer demonstrated the ability to detect monosaccharides by fluorescence with the same overall trend as the monomer in solution with the addition of fructose resulting in a 10-fold enhancement (≤ 0.25 M). <b><u></u></b></p>


2019 ◽  
Vol 91 (15) ◽  
pp. 10095-10101 ◽  
Author(s):  
Palanisamy Ravichandiran ◽  
Sivakumar Allur Subramaniyan ◽  
Antony Paulraj Bella ◽  
Princy Merlin Johnson ◽  
Ae Rhan Kim ◽  
...  

2020 ◽  
Vol 22 (23) ◽  
pp. 13306-13319
Author(s):  
Mhejabeen Sayed ◽  
Dona M. Tom ◽  
Haridas Pal

Pictorial presentation of the different aspects as displayed by the AOH+–SCXn systems in regard to multi-mode binding, dynamic quenching and stimuli responsive fluorescence “turn ON”, demonstrating very rich supramolecular photochemistry.


Sign in / Sign up

Export Citation Format

Share Document